芒果YOLOv5改进90:标签分配策略篇之TOOD:最新基于Task-aligned Assignment任务对齐学习TAL提出新的模型(内附代码),独家改进TOOD分配策略,刷新单阶段目标检测新纪录

该博客介绍了如何基于TOOD(Task-aligned Assignment)改进YOLOv5,通过任务对齐学习TAL解决目标检测中的任务不对齐问题,提供核心代码和网络配置,实现了单阶段目标检测的新突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

芒果专栏 基于 TOOD的改进,改进Task-aligned Assignment任务对齐学习源码教程 | 详情如下🥇
👉1. Task-aligned Assignment任务对齐学习
💡本博客 包括改进所需的 核心结构代码 文件

YOLOv5改进专栏完整目录链接:👉 芒果YOLOv5深度改进教程 | 🔥 订阅一个,阅读YOLOv5全部内容

重点:🔥🔥🔥有不少同学已经反应 专栏的教程 提供的网络结构 在数据集上有效涨点!!!
另外本文对结构进行改进优化,内容包括理论部分改进代码🚀
参考链接:https://arxiv.org/abs/2108.07755

一、TOOD论文理论解析

### YOLOv8 中 Task-Aligned Loss 的实现与作用 #### 一、Task-Aligned Loss 的背景 目标检测中的标签分配是一个核心问题,传统的两阶段方法依赖于区域建议网络(RPN),而单阶段方法则采用基于锚框或其他启发式的策略来完成这一任务。然而,这些传统方式往往存在匹配不精确的问题,从而影响最终的检测性能。为了改善这一点,YOLOv8 引入了 **Task-Aligned Learning (TAL)** 方法[^3]。 #### 二、Task-Aligned Loss 的定义 Task-Aligned Loss 是一种综合考虑分类和定位误差的任务对齐损失函数。它通过动态调整正样本的选择标准,使模型更专注于那些既容易分类又容易回归的目标。这种机制的核心在于计算每个候选框的任务对齐分数 $q_{ij}$: $$ q_{ij} = \alpha_i^{c} \cdot \beta_j^{l}, $$ 其中 $\alpha_i^{c}$ 表示分类置信度得分,$\beta_j^{l}$ 则代表定位质量得分。此公式确保只有当某个预测框在分类和定位上都表现出色时,才会被选为正样本参与训练过程[^4]。 #### 三、具体实现细节 1. **分类分支** 在分类部分,YOLOv8 使用交叉熵作为基础损失,并将其与任务对齐权重相结合形成新的加权形式: ```python loss_cls = -(task_aligned_weights * target_labels * torch.log(predicted_probs)).sum() ``` 2. **定位分支** 对于边界框回归任务,则应用GIoU或DIoU等距离度量指标,并同样乘以相应的位置一致性系数得到增强版的空间约束条件 : ```python loss_box = task_aligned_weights * giou_loss(predict_boxes,target_boxes) ``` 3. **整体框架集成** 将上述两类子项相加以构成完整的总损耗表达式如下所示: ```python total_loss = loss_cls + loss_box ``` 以上即构成了整个YOLOv8体系下关于Task Aligned Loss的主要组成部分及其相互关系描述[^1]。 #### 四、实际意义及优势分析 - 提高标注效率:相比固定规则设定阈值的传统做法,TAL可以根据实际情况灵活决定哪些预测应该成为有效监督信号源. - 增强泛化能力:由于充分挖掘了每张图片内部不同物体间潜在关联特性,因此有助于提升跨场景迁移表现. - 改善收敛速度:合理分布注意力资源至更具价值之处可加速参数寻优进程. ```python def compute_task_aligned_loss(preds, targets): cls_preds, reg_preds = preds['cls'], preds['reg'] labels, bbox_targets = targets['labels'], targets['bboxes'] # Compute classification and localization quality scores alpha_c = calculate_classification_quality(cls_preds, labels)[^3] beta_l = calculate_localization_quality(reg_preds, bbox_targets) # Combine into alignment score q_ij = alpha_c * beta_l # Apply to individual losses with weighting loss_cls = weighted_cross_entropy(q_ij, cls_preds, labels) loss_reg = weighted_giou_loss(q_ij, reg_preds, bbox_targets) return {'total': loss_cls + loss_reg} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值