芒果YOLOv10改进24:损失函数IoU篇之Wise-IoU:最新YOLOv8结合最新WIoU损失函数,超越CIoU, SIoU性能,涨点神器|让YOLO模型高效涨点,目标检测的新损失

本文介绍了Wise-IoU损失函数,一种针对YOLOv10的改进,能有效解决梯度消失问题并提高目标检测性能。实测表明,应用Wise-IoU后的YOLOv10模型在多种实验中实现性能提升。文章详细阐述了Wise-IoU的理论和实现,并提供了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡只订阅这一个专栏即可阅读:芒果YOLOv10所有改进内容

💡本篇文章 基于 YOLOv10芒果改进:芒果改进YOLOv10系列:首发使用最新Wise-IoU损失函数,超越CIoU, SIoU性能,涨点神器|让YOLO模型高效涨点,目标检测的新损失函数,提出了BBR的基于注意力的损失WIoU函数、打造全新YOLOv10检测器


在这里插入图片描述

一、Wise-IoU理论部分 + YOLOv10代码实践

边界框回归 (BBR) 的损失函数对于对象检测至关重要。其良好的定义将为模型带来显着的性能提升。大多数现有工作都假

### YOLOv8改进损失函数 Wise-IOU 的实现方法 #### 1. Wise-IoU 概述 Wise-IoU 是一种型的边界框损失函数,旨在通过引入动态非单调聚焦机制来改善目标检测中的定位精度。相比传统的 IoU 变体如 CIoUSIoUWise-IoU 能够更好地处理不同尺度的目标,并显著提高小目标检测的效果[^2]。 #### 2. Wise-IoU 版本解析 Wise-IoU 存在多个版本,具体如下: - **Wise-IoU v1**: 初步实现了基于距离加权的交并比计算方式。 - **Wise-IoU v2**: 引入了自适应权重调整策略,使得模型能够根据不同场景自动调节参数。 - **Wise-IoU v3**: 结合注意力机制进一步增强了对复杂背景下的鲁棒性[^3]。 #### 3. 在 YOLOv8 中集成 Wise-IoU 为了将 Wise-IoU 集成到 YOLOv8 中,需按照以下步骤操作: ##### 修改 `bbox_iou` 函数 首先需要重定义原有的 `bbox_iou` 函数以支持IoU 计算逻辑。以下是 Python 实现示例: ```python def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, WIoU=True): """ Calculate the Intersection over Union (IoU) between two bounding boxes. Args: ... WIoU (bool): Whether to use Wise-IoU loss function Returns: iou value or wise-iou value based on input parameters """ if WIoU: # Implementing specific logic for Wise-IoU here... pass # Original implementation remains unchanged when not using WIoU ... ``` ##### 更 `_call_` 方法内的 IoU 计算部分 接着要确保每次调用 IoU 时都能正确识别是否启用 Wise-IoU 并执行相应分支路径: ```python class ComputeLoss(nn.Module): def __init__(self, model, autobalance=False): super().__init__() self.sort_obj_iou = False ... def forward(self, pred, targets): device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) # ... other codes remain same until reaching IOU calculation part... if compute_loss.WIou: tbox = targets[:, 2:6].to(device) * whwh_gain anchors = anchor_wh.to(device).unsqueeze(dim=0) giou = bbox_iou(pred[..., :4], tbox, x1y1x2y2=False, WIoU=True)[..., None] # Apply weights from attention mechanism as described in paper att_weights = get_attention_weights(pred, target_boxes=tbox) weighted_giou = giou * att_weights lbox += ((weighted_giou - 1.0)**2).mean() # Use squared difference instead of direct subtraction else: # Standard GIoU/CIoU computation continues normally without changes ... ``` #### 4. 测试与验证 完成上述修改后,可以通过标准的数据集进行训练和评估,观察 Wise-IoU 对整体性能的影响。特别注意对比之前使用的传统 IoU 类型的结果差异,记录下任何可能存在的优势或劣势[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值