💡只订阅这一个专栏即可阅读:芒果YOLOv10所有改进内容
💡本篇文章 基于 YOLOv10芒果
改进:芒果改进YOLOv10系列:首发使用最新Wise-IoU损失函数,超越CIoU, SIoU性能,涨点神器|让YOLO模型高效涨点,目标检测的新损失函数,提出了BBR的基于注意力的损失WIoU函数、打造全新YOLOv10检测器
。
- 涨点效果: 当 WIoU 应用于检测器 YOLOv10 时,在改进试验中实测
WIoU无损涨点提升
- 本文内容包括
理论部分
和改进完整源代码部分
🚀 ,可以直接用来写论文 - 本博客附
其他IoU损失函数改进
:包括SIoU、GIoU、EIoU、α-IoU等,包含完整源代码

一、Wise-IoU理论部分 + YOLOv10代码实践
边界框回归 (BBR) 的损失函数对于对象检测至关重要。其良好的定义将为模型带来显着的性能提升。大多数现有工作都假