如何分析一个排序算法
算法的执行效率
- 最好情况、最坏情况、平均情况时间复杂度
- 时间复杂度的系数、常数 、低阶
- 比较次数和交换(或移动)次数
排序算法的内存消耗
我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。
排序的稳定性
仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
冒泡排序
代码实现
// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
if (n <= 1) return;
for (int i = 0; i < n; ++i) {
// 提前退出冒泡循环的标志位
boolean flag = false;
for (int j = 0; j < n - i - 1; ++j) {
if (a[j] > a[j+1]) { // 交换
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
flag = true; // 表示有数据交换
}
}
if (!flag) break; // 没有数据交换,提前退出
}
}
算法性能分析:
- 原地排序算法
- 稳定性排序算法
- 时间复杂度:最好是 O ( 1 ) O(1) O(1),最坏是 O ( n 2 ) O(n^2) O(n2),平均时间复杂度也是 O ( n 2 ) O(n^2) O(n2)。
插入排序
首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
代码实现
// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
if (n <= 1) return;
for (int i = 1; i < n; ++i) {
int value = a[i];
int j = i - 1;
// 查找插入的位置
for (; j >= 0; --j) {
if (a[j] > value) {
a[j+1] = a[j]; // 数据移动
} else {
break;
}
}
a[j+1] = value; // 插入数据
}
}
算法性能分析:
- 原地排序算法
- 稳定性排序算法
- 时间复杂度:最好是 O ( 1 ) O(1) O(1),最坏是 O ( n 2 ) O(n^2) O(n2),平均时间复杂度也是 O ( n 2 ) O(n^2) O(n2)。
选择排序
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素, 将其放到已排序区间的末尾。
public static void selectSort(int[] arr){
for(int i = 0; i < arr.length-1; i++){
int min = i;
for(int j = i+1; j <arr.length ;j++){
if(arr[j]<arr[min]){
min = j;
}
}
if(min!=i){
swap(arr, i, min);
}
}
}
//完成数组两元素间交换
public static void swap(int[] arr,int a,int b){
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}