矩阵的列秩与行秩相等

本文通过实例展示了非方阵A及其转置AT的初等行变换过程,证明了主元个数决定了矩阵的秩,即rank(A)=rank(AT)=2。由此得出结论,非方阵的行秩等于其列秩,且初等行变换和转置都不会改变矩阵的秩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

考虑一个非方阵
A = [ 1 1 2 1 3 1 ] A= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} A=123111
将其进行初等行变换
A = [ 1 1 0 − 1 0 − 2 ] A= \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 0 & -2 \end{bmatrix} A=100112
A = [ 1 1 0 − 1 0 0 ] A= \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} A=100110
A = [ 1 0 0 1 0 0 ] A= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} A=100010
可知主元个数为2,因此 r a n k ( A ) = 2 rank(A)=2 rank(A)=2,判断的依据是行向量最大线性无关组数量为2。

将矩阵 A A A转置
A T = [ 1 2 3 1 1 1 ] A^T= \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ \end{bmatrix} AT=[112131]
再做初等行变换
A T = [ 1 2 3 0 − 1 − 2 ] A^T= \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ \end{bmatrix} AT=[102132]
A T = [ 1 0 − 1 0 − 1 − 2 ] A^T= \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & -2 \\ \end{bmatrix} AT=[100112]
A T = [ 1 0 − 1 0 1 2 ] A^T= \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ \end{bmatrix} AT=[100112]
同理,可知主元个数为2,因此 r a n k ( A T ) = 2 rank(A^T)=2 rank(AT)=2,判断的依据是行向量最大线性无关组数量为2。

考虑
1 转置不改变矩阵的秩。
2 初等行变换不改变矩阵的秩。

矩阵 A T A^T AT的行秩实际为矩阵 A A A的列秩,因此非方阵的行秩等于列秩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值