考虑一个非方阵
A
=
[
1
1
2
1
3
1
]
A= \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}
A=⎣⎡123111⎦⎤
将其进行初等行变换
A
=
[
1
1
0
−
1
0
−
2
]
A= \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 0 & -2 \end{bmatrix}
A=⎣⎡1001−1−2⎦⎤
A
=
[
1
1
0
−
1
0
0
]
A= \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}
A=⎣⎡1001−10⎦⎤
A
=
[
1
0
0
1
0
0
]
A= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}
A=⎣⎡100010⎦⎤
可知主元个数为2,因此
r
a
n
k
(
A
)
=
2
rank(A)=2
rank(A)=2,判断的依据是行向量最大线性无关组数量为2。
将矩阵
A
A
A转置
A
T
=
[
1
2
3
1
1
1
]
A^T= \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ \end{bmatrix}
AT=[112131]
再做初等行变换
A
T
=
[
1
2
3
0
−
1
−
2
]
A^T= \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ \end{bmatrix}
AT=[102−13−2]
A
T
=
[
1
0
−
1
0
−
1
−
2
]
A^T= \begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & -2 \\ \end{bmatrix}
AT=[100−1−1−2]
A
T
=
[
1
0
−
1
0
1
2
]
A^T= \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ \end{bmatrix}
AT=[1001−12]
同理,可知主元个数为2,因此
r
a
n
k
(
A
T
)
=
2
rank(A^T)=2
rank(AT)=2,判断的依据是行向量最大线性无关组数量为2。
考虑
1 转置不改变矩阵的秩。
2 初等行变换不改变矩阵的秩。
矩阵 A T A^T AT的行秩实际为矩阵 A A A的列秩,因此非方阵的行秩等于列秩