行秩列秩一定相等吗_秩、行列式

秩(Rank)的概念最早可以追溯至中国的《九章算术》,那时就已经通过秩的概念来描述线性方程组的解的数量了。

比如方程组(1):

表示为矩阵形式:

通过初等变换,化为行阶梯形:

原方程组有唯一解:

比如方程组(2):

表示为矩阵形式:

通过初等变换,化为行阶梯形:

看行阶梯形矩阵的第三行,也就是

,这个方程是不可能成立的,所以,原方程组无解。

比如方程组(3):

表示为矩阵形式:

通过初等变换,化为行阶梯形:

原方程组有无穷多解:

我们把线性方程组未知数的个数记为

,把系数组成的矩阵称为
系数矩阵,把包含常数的系数矩阵称为 增广矩阵,比如方程组(1)的系数矩阵和增广矩阵分别为:

可以看到,线性方程组的解最多有三种情形:唯一解无解无穷多解。这有啥规律呢?

1、当系数矩阵的行阶梯形的非零行个数等于未知数的个数时,方程组有唯一解。

2、当系数矩阵的行阶梯形的非零行个数小于增广矩阵的行阶梯形的非零行个数时,方程组无解。

3、当系数矩阵的行阶梯形的非零行个数等于增广矩阵的行阶梯形的非零行个数,且小于未知数的个数时,方程组有无穷多解。

可能你已经知道这规律,但是让上面的文字描述给绕晕了,这时矩阵的秩的概念应运而生!

定义:矩阵的行阶梯形的非零行个数称为矩阵的秩,记做

通常系数矩阵的秩记做

,增广矩阵的秩记做
,这样,通过矩阵的秩来描述线性方程解的规律就没那么绕口了:

1、当

时,即系数矩阵的秩
等于未知数的个数时,方程组有唯一解。

2、当

时,即系数矩阵的秩
小于增广矩阵的秩时,方程组无解。

3、当

时,即系数矩阵的秩
等于增广矩阵的秩且 小于未知数的个数时,方程组有无穷多解。

行列式

很多教科书介绍行列式时,上来就什么对角线法则、行列式有什么性质,到底行列式是用来干嘛的?难道就是用来考试用的?

其实,行列式(Determinant)的概念并非空穴来风,它来源于求解线性方程组的过程中。

比如求解以下二元一次线性方程组:

使用高斯消元法,我们很快就能得到

那一般的情形呢?

比如:

也是用高斯消元法代入进去,得到:

看下有没有什么规律,噢,分母都是

,这都是方程组的系数啊,这么一大坨,我们就叫他系数矩阵的
行列式吧。

你看,行列式的概念就是从这里出来的。计算公式就是:

如果方程组的系数矩阵记做

,那我们就把它的行列式记做
或者

再来看分子,当我们求

时,当我们把常数替换系数矩阵的第一列,然后再根据行列式的计算公式,不正好可以得到分子吗?

同理,求

时,

我们把方程组的系数矩阵记做

,把用常数向量替换第一列的矩阵记做
,把用常数向量替换第二列的矩阵记做

现在好了,借助行列式的概念,我们描述线性方程组的解时,就简洁方便多了:


总结

现在我们可以清楚知道,矩阵的秩是用来描述线性方程组的解的数量的,矩阵的行列式则是用来描述线程方程组求解过程的,这两个概念的引入,起初都是用来简化描述的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值