信息论2——单维连续信源

博客介绍了连续信源相关的熵知识。连续信源的连续熵为无穷大,因其分割有无穷多种。微分熵即相对熵,虽不具信息内涵,但可用于比较连续信源不确定性。还阐述了常见约束下信源的最大相对熵定理,如峰值、均值、平均功率受限情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


信源输出的消息是时间和取值都连续的随机函数,连续信源可以用一个随机过程{x(t)}表示,其输出的消息是随机过程{x(t)}中的一个样本函数。我们可以用概率密度的形式来进行描述:

[ X □ P ] : { X : [ a , b ] (  或  R ) P ( X ) p ( x ) [X \square P]:\left\{\begin{array}{ll}X: & {[\mathrm{a}, \mathrm{b}](\text { 或 } \mathrm{R})} \\ P(X) & \mathrm{p}(\mathrm{x})\end{array}\right. [XP]:{X:P(X)[a,b](  R)p(x)
由概率密度函数 p ( x ) p(x) p(x) 就可确定单维连续信源 X的概率分布:
F ( x 1 ) = P { X ≤ x 1 } = ∫ a x 1 p ( x ) d x \mathrm{F}\left(x_{1}\right)=P\left\{X \leq x_{1}\right\}=\int_{a}^{x_{1}} p(x) d x F(x1)=P{Xx1}=ax1p(x)dx
∫ a b p ( x ) d x = 1 \int_{a}^{b} p(x) d x=1 abp(x)dx=1

在这里插入图片描述

连续熵(无穷大)

因为连续信源是连续的,分析它的时候,我们对它的分割是有无穷多种的,所以无穷大是合理的。

微分熵(相对熵)

h ( X ) = − ∫ a b p ( x ) log ⁡ p ( x ) d x h(X)=-\int_{a}^{b} p(x) \log p(x) d x h(X)=abp(x)logp(x)dx,相对熵不具有信息的内涵,它在单维连续信道中的平均交互信息量中有作用。单维连续信源的信息熵是无限大的正数,相对熵是其中确定值的一部分,可以计算。

我们暂时用它比较两个连续信源的不确定性。

性质:不具有非负性

常见约束下信源的最大相对熵

峰值功率受限最大相对熵定理:对于峰值功率受限的单维连续信源,当输出消息的概率密度是均匀分布时,相对熵达到最大值。

比如:输出信号的瞬间电压受限

在这里插入图片描述

均值受限信源的最大相对熵定理:对于输出消息非负且均值受限的单维连续信源,当输出消息的概率密度函数为单边指数分布时,相对熵达到最大值。

在这里插入图片描述

平均功率受限信源的最大相对熵定理:若单维连续信源输出信号的平均功率限定为P,则其输出消息的概率密度函数为高斯分布时,相对熵达到最大值

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值