最优化——单纯形法学习心得

单纯形法

基本可行解的表示式(教材中称为典式) :基变量只出现在一个等式的等式约束

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UHbJsxlP-1607322076772)(最优化—线性规划.assets/image-20201207112757323.png)]

在选择保留进基变量所在行的过程中不用考虑进基变量的系数不是正数的行 ,选择进基变量系数非负的行保留进基变量

思路:①假设已知一个基本可行解➡️②选择能够使目标函数改进的进基变量➡️③判断目前的基本可行解是否最优

对于最优规划
max ⁡ z  s.t.  P 1 x 1 + P 2 x 2 + ⋯ + P n x n = b ⃗ c 1 x 1 + c 2 x 2 + ⋯ + c n x n = z x j ≥ 0 , ∀ 1 ≤ j ≤ n \begin{aligned} &\max z\\ &\begin{array}{ll} \text { s.t. } & P_{1} x_{1}+P_{2} x_{2}+\cdots+P_{n} x_{n}=\vec{b} \\ & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=z \\ & x_{j} \geq 0, \forall 1 \leq j \leq n \end{array} \end{aligned} maxz s.t. P1x1+P2x2++Pnxn=b c1x1+c2x2++cnxn=zxj0,1jn
变换成单纯形表(即变换出基变量):
 BV  x 1 ⋯ x k ⋯ x n  RHS  x j ( 1 ) p ^ 11 ⋯ p ^ 1 k ⋯ p ^ 1 n p ^ 1 n + 1 ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ x j ( m ) p ^ m 1 ⋯ p ^ m k ⋯ p ^ m n p ^ m n + 1 σ 1 ⋯ σ k ⋯ σ n z − z ^  其中  ( P ^ j ( 1 ) , ⋯   , P ^ j ( m ) ) = I m , z ^ = C B T P ^ n + 1 = C B T B − 1 b ⃗ σ j = c j − C B T P ^ j = c j − C B T B − 1 P j , ∀ 1 ≤ j ≤ n  称  σ 1 , ⋯   , σ n  为检验数,可看出基变量检验数等于0  \begin{aligned} &\begin{array}{c|ccccc|c} \hline \text { BV } & x_{1} & \cdots & x_{k} & \cdots & x_{n} & \text { RHS } \\ \hline x_{j(1)} & \hat{p}_{11} & \cdots & \hat{p}_{1 k} & \cdots & \hat{p}_{1 n} & \hat{p}_{1 n+1} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ x_{j(m)} & \hat{p}_{m 1} & \cdots & \hat{p}_{m k} & \cdots & \hat{p}_{m n} & \hat{p}_{m n+1} \\ \hline & \sigma_{1} & \cdots & \sigma_{k} & \cdots & \sigma_{n} & z-\hat{z} \\ \hline \end{array}\\ &\text { 其中 }\left(\hat{P}_{j(1)}, \cdots, \hat{P}_{j(m)}\right)=I_{m}, \hat{z}=C_{B}^{T} \hat{P}_{n+1}=C_{B}^{T} B^{-1} \vec{b}\\ &\sigma_{j}=c_{j}-C_{B}^{T} \hat{P}_{j}=c_{j}-C_{B}^{T} B^{-1} P_{j}, \quad \forall 1 \leq j \leq n\\ &\large\text { 称 } \sigma_{1}, \cdots, \sigma_{n} \text { 为检验数,可看出基变量检验数等于0 } \end{aligned}  BV xj(1)xj(m)x1p^11p^m1σ1xkp^1kp^mkσkxnp^1np^mnσn RHS p^1n+1p^mn+1zz^ 其中 (P^j(1),,P^j(m))=Im,z^=CBTP^n+1=CBTB1b σj=cjCBTP^j=cjCBTB1Pj,1jn  σ1,,σn 为检验数,可看出基变量检验数等于
②选择对应单纯形表中检验数大于0的变量进基,可使得目标函数改进。

③如果单纯形表中检验数全都不大于0,那么对应的基本可行解就是最优解。

在这里插入图片描述

退化问题:

​ 退化问题:基本可行解对应的基变量中存在0元素。本质是多个可行基阵对应于一个基本可行解

​ 退化问题的解决:只要设法避免回到已经搜索过的基阵,就可以保证单纯形法在有限步内停止。

检验数与退化问题:

​ 1. 对于求max的线性规划问题 ,如果所有检验数均满足小于等于0, 而且某非基变量的检验数也等于0,则说明优化问题有无穷多最优解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值