MATLAB中的单相与三相dq变换模块

1. 单相αβ-dq变换模块

(1) wt=0的情况

  Simulink中单相αβ-dq模块时有两种变换矩阵的,这两种变换矩阵的相同点是,vq超前vd90度,不同点是wt=0的位置不一样。我们在αβ-dq变换中规定 θ \theta θ是wt=0滞后于vd的角度,也就是说以wt=0为基准,vd逆时针旋转 θ \theta θ。第一种变换矩阵由下图决定
在这里插入图片描述
在这里插入图片描述  根据这个αβ-dq变换矩阵,可以确定 v α v_α vα超前 v β v_\beta vβ 90度,否则vd和vq的直流量会为0,就只剩二倍于基频的交流量。可以假设 v α = V m c o s ( w t − ϕ ) v β = V m s i n ( w t − ϕ ) v_\alpha=Vmcos(wt-\phi) \\v_\beta=Vmsin(wt-\phi) vα=Vmcos(wtϕ)vβ=Vmsin(wtϕ) ,带入计算可知 v d = V m c o s ϕ        v q = − V m s i n ϕ v_d=Vmcos\phi\ \ \ \ \ \ v_q=-Vmsin\phi vd=Vmcosϕ      vq=Vmsinϕ,显然可以推出 v α = v d c o s w t − v q s i n w t v_\alpha=v_dcoswt-v_qsinwt vα=vdcoswtvqsinwt这个也就是整个系统的一般表达式,整体上思路就是仅仅和αβ-dq矩阵有关,一旦确定这个矩阵,也就确定了 v α v_α vα v d v_d vd v q v_q vq关系
  特别注意,锁相环输出的应该是sinwt的相位,而不是输入信号的相位,就是说dq变换矩阵的wt是与输入信号无关的

(2) wt=- 9 0 ∘ 90^\circ 90的情况

  这种情况下,αβ-dq变换图和变换矩阵如下:
在这里插入图片描述
在这里插入图片描述  这种情况下依然是 v α v_α vα超前 v β v_\beta vβ 90度,原因就不再赘述,最后推出 v α = v d s i n w t + v q c o s w t v_\alpha=v_dsinwt+v_qcoswt vα=vdsinwt+vqcoswt

2. 三相abc-dq变换模块

(1) wt=0的情况

  将abc-dq分解成abc-αβ和αβ-dq的乘积,其中αβ-dq的变换已经在第一节中讨论了,而abc-αβ的变换矩阵时固定的,针对恒幅值状况,变换矩阵如下。
在这里插入图片描述  这种情况下,abc-dq的变换矩阵如下图所示。
在这里插入图片描述  如果考虑零序分量,即v0=(1/3)(va+vb+vc),因此上式可以改编为:
在这里插入图片描述  注意: a b − α β ab-\alpha\beta abαβ变换在三相中,如果vabc是满足正常的120超前滞后关系,则 v a = v α v_a=v_\alpha va=vα v β v_\beta vβ是滞后 v α v_\alpha vα 90度的。这个观念是非常非常重要的。而且这个变换与cos或者sin是无关的,均满足这个特性,只要是vabc是满足正常的120超前滞后关系

(2) wt=- 9 0 ∘ 90^\circ 90的情况

  由于abc-αβ的变换矩阵是一致的,因此仅考虑αβ-dq的不同,其变换矩阵如下:
在这里插入图片描述
在这里插入图片描述  其实这两种变换是可以归算到同一个坐标系中的,假设已知wt=0的情况时vd的表达式,由于vd超前wt=0的夹角是 θ \theta θ,而vq超前wt=0的夹角是 θ + π 2 \theta+\frac{\pi}{2} θ+2π,带入vd表达式即可验证。重要的是wt=- 9 0 ∘ 90^\circ 90的情况,将这种坐标系下vd归算到wt=0的坐标系下的结果,vd超前于wt=0的夹角应该是 θ − π 2 \theta-\frac{\pi}{2} θ2π,可以带入进行验算,而此时的vq超前于wt=0的夹角应当是 θ \theta θ这个思想是非常重要的,所有的情况全部折算到wt=0的坐标情况下,即可

参考资料

4种派克(Park)变换、克拉克(Clark)变换与基于dq轴解耦的双闭环控制之间的关系(一)

反馈与建议

  • 邮箱:upqcyjp@163.com
<think>嗯,用户想进行单相dq变换的仿真,但不太清楚方法和工具。首先,我需要回忆一下dq变换的基本原理。dq变换通常用于三相系统中,将三相静止坐标系转换为旋转的dq坐标系,便于控制。但单相系统只有一相,怎么实现呢? 用户提供的引用里有几个线索。比如引用[3]提到用一阶滤波两次来生成90度相移的alpha和beta分量,这可能就是关键。单相信号无法直接分解出正交分量,所以需要构造虚拟的beta分量。通常方法可能是使用希尔伯特变换或者延迟法,但引用里提到的是用两次一阶滤波,这可能是一种近似方法。需要确认这种方法的正确性。 然后,用户提到仿真工具,应该用Simulink,因为引用里多次提到Matlab/Simulink。接下来,具体的仿真步骤可能需要先生成alpha和beta分量,再应用Park变换dq坐标系。但单相情况下,如何生成这两个分量呢?根据引用[3],使用两次一阶滤波来获得90度相移,这样可能产生beta分量。需要进一步解释这个过程是否正确,以及参数如何设置。 另外,引用[4]指出在单相dq解耦控制中,电流环闭合困难,可能低通滤波器有关。这说明在仿真时需要注意滤波器的设计,避免引入过大的相位延迟或影响动态响应。所以,在步骤中需要强调滤波器的参数调整,可能影响仿真结果。 用户可能还不太清楚单相dq变换三相的区别,需要对比说明。比如单相需要构造虚拟正交分量,而三相自然有120度相位差,可以直接转换。同时,仿真工具的具体模块选择,如dq变换模块,可能需要选择正确的变换方式,如引用[2]提到的相位对齐方式,这可能影响仿真结果。 最后,要生成相关问题,应该围绕单相dq变换的实现方法、仿真中的常见问题、参数调整以及应用场景等方面提问,帮助用户深入理解。</think>### 单相 DQ 变换仿真方法及工具 #### 1. **核心原理** 单相 DQ 变换需构造虚拟正交分量($\alpha$-$\beta$坐标系),再通过 Park 变换转换为旋转的 $d$-$q$ 坐标系。具体步骤: - **步骤1**:单相电压/电流信号 $x(t)$ 生成 $\alpha$ 分量(直接赋值)和 $\beta$ 分量(滞后 90°),例如: $$x_\alpha = x(t), \quad x_\beta = \text{Hilbert}(x_\alpha) \quad \text{或一阶滤波延迟法}[^3]$$ - **步骤2**:对 $\alpha$-$\beta$ 分量进行 Park 变换: $$ \begin{cases} x_d = x_\alpha \cos\theta + x_\beta \sin\theta \\ x_q = -x_\alpha \sin\theta + x_\beta \cos\theta \end{cases} $$ 其中 $\theta$ 为电网电压相位角(需锁相环 PLL 获取)[^3][^4]。 #### 2. **仿真工具(Simulink)** - **关键模块**: - **正交分量生成**:使用一阶低通滤波器串联两次(时间常数 $\tau$),近似实现 90° 相移,例如: $$H(s) = \frac{1}{\tau s + 1}, \quad \text{两次级联后相位滞后约 90°}[^3]$$ - **Park 变换模块**:选择 `Aligned with phase A axis`(电网相位对齐)或 `90 degree behind phase A axis`(取决于控制需求)[^2]。 - **锁相环 (PLL)**:用于实时跟踪电网频率和相位。 - **典型模型结构**: ``` 单相输入 → 正交分量生成 → Park变换DQ控制 → 反Park变换 → 输出 ``` #### 3. **注意事项** - **滤波器影响**:低通滤波器可能导致幅值衰减和相位误差,需调整 $\tau$ 值(例如 $\tau=0.005$ 对应 50Hz 系统)。 - **闭环稳定性**:电流环控制需补偿滤波器延迟,可尝试增大比例增益或加入超前校正环节[^4]。 #### 4. **参考仿真案例** - **单相并网逆变器 DQ 控制**:通过生成 $\alpha$-$\beta$ 分量实现电流解耦,需验证滤波器的相移效果。 - **单相整流器 DQ 解耦**:若电流环无法闭合,需检查滤波器参数或坐标变换对齐方式。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值