单相dq解耦控制

1. 单相dq解耦

  本周重点剖析单相dq解耦的方式,发现很多论文上关于dq轴的定义都不一样,以及dq变换矩阵的定义都不同,让人感到眼花缭乱,不知道到底哪一个是正确的,经过多篇文献的分析,总结出以下特点。
在这里插入图片描述

(1) dq变换矩阵形式1

  dq变换矩阵的确定是和dq轴以及 α β \alpha \beta αβ轴的定义有关,也就是说不同的 α β \alpha \beta αβ轴定义或者不同的dq轴定义,最后的变换矩阵都是不一样的,下面举个例子。
  当dq变换的矢量图如下图所示,很容易可以写出dq轴关于 α β \alpha \beta αβ轴的关系。
在这里插入图片描述 [ d q ] = [ cos ⁡ ω t sin ⁡ ω t − sin ⁡ ω t cos ⁡ ω t ] [ α β ] \begin{bmatrix} d\\ q \end{bmatrix}= \begin{bmatrix} \cos{\omega}t & \sin{\omega}t \\ -\sin{\omega}t & \cos{\omega}t \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix} [dq]=[cosωtsinωtsinωtcosωt][αβ]
  假设 i s ( t ) = I s m s i n ( ω t + ϕ ) is(t)=I_{sm}sin(\omega t+\phi) is(t)=Ismsin(ωt+ϕ),令 i α = i s , i β = − I s m c o s ( ω t + ϕ ) i_\alpha=is,i_\beta=-I_{sm}cos(\omega t+\phi) iα=isiβ=Ismcos(ωt+ϕ),很显然这里设定的是 i α i_\alpha iα超前 i β i_\beta iβ 9 0 ∘ 90^\circ 90,仔细看会发现,如果此时设定 i α i_\alpha iα滞后 i β i_\beta iβ 9 0 ∘ 90^\circ 90,将会使 i s d i_{sd} isd的直流量为0,这显然不是我们想要的。
[ i s d i s q ] = [ cos ⁡ ω t sin ⁡ ω t − sin ⁡ ω t cos ⁡ ω t ] [ i α i β ] \begin{bmatrix} i_{sd}\\ i_{sq} \end{bmatrix}= \begin{bmatrix} \cos{\omega}t & \sin{\omega}t \\ -\sin{\omega}t & \cos{\omega}t \end{bmatrix} \begin{bmatrix} i_\alpha\\ i_\beta \end{bmatrix} [isdisq]=[cosωtsinωtsinωtcosωt][iαiβ]
  最终你会算的 i s = i s d c o s w t − i s q s i n w t i_s=i_{sd}coswt-i_{sq}sinwt is=isdcoswtisqsinwt当我们变化is时,只要保证 i α i_\alpha iα超前 i β i_\beta iβ 9 0 ∘ 90^\circ 90,算出的is表达式均满足 i s = i s d c o s w t − i s q s i n w t i_s=i_{sd}coswt-i_{sq}sinwt is=isdcoswtisqsinwt。这种变换矩阵适合网侧电压表达式是** U s = U m c o s ω t U_s=U_mcos{\omega}t Us=Umcosωt**的情况,如果你要设定 i s = i s d cos ⁡ ω t + i s q sin ⁡ ω t i_s=i_{sd}\cos\omega t+i_{sq}\sin\omega t is=isdcosωt+isqsinωt很显然只需要将dq变换矩阵第二行更换正负,即 sin ⁡ ω t \sin{\omega}t sinωt − cos ⁡ ω t -\cos{\omega}t cosωt

(2) dq变换矩阵形式2

  有时候我们会设定 U s = U m s i n ω t U_s=U_msin{\omega}t Us=Umsinωt,这种情况下如果还是按照形式1来看的话,显然 U d = 0 U_d=0 Ud=0,这和我们预期的定义并不一样,此时我们需要更换dq变换矩阵,也就是第一行是sin cos,第二行是cos sin。只要满足这一点,便可确定是idsinwt和iqcoswt,而不是形式1中iqsinwt和idsinwt。我们发现在很多论文中,确实满足第一行是sin cos,第二行是cos sin,但是dq变换矩阵的各个正负号以及 i α i_\alpha iα i β i_\beta iβ超前滞后关系并不一样,这个其实是比较好确定的。下面举个例子:
  假设 i s ( t ) = I s m s i n ( ω t + ϕ ) is(t)=I_{sm}sin(\omega t+\phi) is(t)=Ismsin(ωt+ϕ),令 i α = i s , i β = I s m c o s ( ω t + ϕ ) i_\alpha=is,i_\beta=I_{sm}cos(\omega t+\phi) iα=isiβ=Ismcos(ωt+ϕ),很显然这里设定的是 i α i_\alpha iα滞后 i β i_\beta iβ 9 0 ∘ 90^\circ 90,仔细看会发现,如果此时设定 i α i_\alpha iα超前 i β i_\beta iβ 9 0 ∘ 90^\circ 90,将会使 i s d i_{sd} isd的直流量为0,这显然不是我们想要的。
[ i s d i s q ] = [ sin ⁡ ω t cos ⁡ ω t − cos ⁡ ω t sin ⁡ ω t ] [ i α i β ] \begin{bmatrix} i_{sd}\\ i_{sq} \end{bmatrix}= \begin{bmatrix} \sin{\omega}t & \cos{\omega}t \\ -\cos{\omega}t & \sin{\omega}t \end{bmatrix} \begin{bmatrix} i_\alpha\\ i_\beta \end{bmatrix} [isdisq]=[sinωtcosωtcosωtsinωt][iαiβ]
  最终你会算的 i s = i s d s i n w t − i s q c o s w t i_s=i_{sd}sinwt-i_{sq}coswt is=isdsinwtisqcoswt当我们变化is时,只要保证 i α i_\alpha iα滞后 i β i_\beta iβ 9 0 ∘ 90^\circ 90,算出的is表达式均满足 i s = i s d c o s w t − i s q s i n w t i_s=i_{sd}coswt-i_{sq}sinwt is=isdcoswtisqsinwt。这种变换矩阵适合网侧电压表达式是** U s = U m s i n ω t U_s=U_msin{\omega}t Us=Umsinωt的情况,如果你要设定 i s = i s d sin ⁡ ω t + i s q cos ⁡ ω t i_s=i_{sd}\sin\omega t+i_{sq}\cos\omega t is=isdsinωt+isqcosωt很显然只需要将dq变换矩阵第二行更换正负,即 cos ⁡ ω t \cos{\omega}t cosωt − sin ⁡ ω t -\sin{\omega}t sinωt
  一直很好奇Simulink自带的dq变换模块是什么样的形式,经过查找资料,发现其矢量变换
如图虚线所示**:
在这里插入图片描述  很容易可以写出dq轴关于 α β \alpha \beta αβ轴的关系。
[ d q ] = [ sin ⁡ ω t − cos ⁡ ω t cos ⁡ ω t sin ⁡ ω t ] [ α β ] \begin{bmatrix} d\\ q \end{bmatrix}= \begin{bmatrix} \sin{\omega}t & -\cos{\omega}t \\ \cos{\omega}t & \sin{\omega}t \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix} [dq]=[sinωtcosωtcosωtsinωt][αβ]
  可以看出,MATLAB中的dq变换是默认 U s = U m s i n ω t U_s=U_msin{\omega}t Us=Umsinωt的情况,但是它又不同于我们上面讨论的类型,使用这种变换矩阵时, i α i_\alpha iα超前 i β i_\beta iβ 9 0 ∘ 90^\circ 90如果此时设定 i α i_\alpha iα滞后 i β i_\beta iβ 9 0 ∘ 90^\circ 90,将会使 i s d i_{sd} isd的直流量为0。并且这种模式下计算出来 i s = i s d sin ⁡ ω t + i s q cos ⁡ ω t i_s=i_{sd}\sin\omega t+i_{sq}\cos\omega t is=isdsinωt+isqcosωt。显然,这种模式是我们最常用的模式,但是也应该明白, U s = U m c o s ω t U_s=U_mcos{\omega}t Us=Umcosωt,进过dq变换后,Ud为0,Uq为Um。看上去和常理不一致,但其实是符合逻辑的,这种电源相位的设置情况下,与电源相位一致的分量是有功分量,但dq变换后却应该是q分量,这个和常识相反,故我们使用Simulink自带的dq变换模块时,设置 U s = U m s i n ω t U_s=U_msin{\omega}t Us=Umsinωt

2. 单相整流器dq解耦控制

(1) 基本公式推导

  使用dq变换形式1,结合单相整流器的原理,可以得到下列方程:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  只要确定了 i s = i s d c o s w t − i s q s i n w t i_s=i_{sd}coswt-i_{sq}sinwt is=isdcoswtisqsinwt,就确定了整个系统电压电流的表达形式,其余的只要按部就班即可。另外, i s = i s d s i n w t + i s q c o s w t i_s=i_{sd}sinwt+i_{sq}coswt is=isdsinwt+isqcoswt时,最终计算出的usd和usq表达式和上式一样,这一点特别注意

(2)常用形式

  设定电感电流正方向是流入变换器,则
u s = u a b + L d i L d t u s = u s d s i n w t + u s q c o s w t u a b = u a b d s i n w t + u a b q c o s w t i L = i L d s i n w t + i L q c o s w t L d i L d t = L d i d d t s i n w t + L d i q d t c o s w t + w L i d c o s w t − w L i q s i n w t u_s=u_{ab}+L\frac{d_{i_L}}{d_t} \\ u_s=u_{sd}sinwt+u_{sq}coswt \\ u_{ab}=u_{abd}sinwt+u_{abq}coswt \\ i_L=i_{Ld}sinwt+i_{Lq}coswt \\ L\frac{d_{i_L}}{d_t} =L\frac{d_{i_d}}{d_t} sinwt+L\frac{d_{i_q}}{d_t} coswt+wLi_dcoswt-wLi_qsinwt \\ us=uab+LdtdiLus=usdsinwt+usqcoswtuab=uabdsinwt+uabqcoswtiL=iLdsinwt+iLqcoswtLdtdiL=Ldtdidsinwt+Ldtdiqcoswt+wLidcoswtwLiqsinwt
  将上述公式整合。得:
u a b d = u s d − L d i d d t + w L i q u a b q = u s q − L d i q d t − w L i d u_{abd}=u_{sd}-L\frac{d_{i_d}}{d_t}+wLi_q \\ u_{abq}=u_{sq}-L\frac{d_{i_q}}{d_t}-wLi_d uabd=usdLdtdid+wLiquabq=usqLdtdiqwLid

3. 学习疑问

  虽然弄清楚了单相dq解耦的基本原理,按照上述表达式搭建模型,但是仿真时发现电流环始终闭不上,然而三相dq解耦的整流器却能很轻松的闭上电流环,目前不知道是哪部分的问题。——确定问题,低通滤波器的影响

### 回答1: 单相PWM整流器是一种常用的电力电子设备,用于将交流电转换为直流电。它的输入电压为交流电源,输出电压为直流电,用于供给直流负载。为了实现对输出电流的解耦控制,需要采用dq电流解耦控制方法。 该控制方法基于dq坐标转换,将三相坐标下的电流转换到dq坐标下进行控制dq坐标系是一种旋转坐标系,以动态旋转角速度ω旋转,使得d轴与直流分量对齐,q轴与交流分量对齐。 在dq坐标系下,将电流分为d轴分量和q轴分量。其中,d轴分量表示直流分量,影响整流器的输出电压大小,q轴分量表示交流分量,影响整流器的输出电流波动。 通过控制d轴分量和q轴分量的大小和相位,可以实现对输出电流的解耦控制。具体实现方法是使用PI控制器,根据输出电流与参考电流之间的误差进行控制,调节电压源的开关器件的控制信号。 通过dq电流解耦控制,可以实现单相PWM整流器的输出电流和电压的独立控制。该控制方法具有响应速度快、控制精度高等优点,适用于对输出电流和电压精确控制要求较高的应用场景。 ### 回答2: 单相PWM整流器是一种电力电子装置,用于将交流电转换为直流电。DQ电流解耦控制是一种控制策略,用于确保整流器的直流输出电流质量,并实现电流的快速响应和准确控制DQ电流解耦控制基于电流松弛观点,将整流器的输出电流分解到D轴和Q轴上。D轴代表直流分量,而Q轴代表交流分量。通过将输出电流分解为这两个分量,并进行独立控制,可以实现电流的解耦和独立控制。 在DQ电流解耦控制中,D轴电流用于控制整流器的直流输出电流的大小。通过控制D轴电流参考值,可以实现对整流器输出电流的准确控制和调节。Q轴电流用于控制交流分量,以提高整流器的动态响应性能和稳定性。Q轴电流的控制在一定程度上可以减小谐波,并实现对电流的快速响应和调节。 DQ电流解耦控制采用了PI控制器来控制D轴和Q轴电流,通过对电流误差进行反馈控制,实现了对整流器输出电流的稳定控制和快速响应。此外,DQ电流解耦控制还采用了空间矢量调制策略,通过调整PWM波形的占空比和相位来实现对输出电流的精确控制和调节。 总之,单相PWM整流器DQ电流解耦控制是一种高效的控制策略,可以实现对整流器输出电流的精确控制和稳定调节,提高整流器的性能和响应速度。 ### 回答3: 单相PWM整流器DQ电流解耦控制是一种电力电子技术,用于控制单相PWM整流器中的电流。DQ电流解耦控制旨在将输入电流分解为两个正交轴上的独立分量,即直轴电流Id和交轴电流Iq。这种解耦控制可以实现对输入电流的精确控制,使得整流器的电流与电压之间的相位差控制更加简单和精确。 DQ电流解耦控制的关键在于采用Park变换和逆Park变换,将三相坐标系下的电流转换到DQ坐标系中。具体地说,首先通过Park变换将三相坐标系下的电流转换为DQ坐标系下的电流,然后利用控制算法对DQ坐标系下的电流进行控制,最后通过逆Park变换DQ坐标系下的电流转换回三相坐标系。 在DQ坐标系下,直轴电流Id和交轴电流Iq是独立的,通过分别控制它们可以实现对整流器输入电流的精确控制。例如,可以通过控制直轴电流Id来控制整流器的有功功率,而通过控制交轴电流Iq可以实现对整流器的无功功率或者电压的调节。 总之,单相PWM整流器DQ电流解耦控制可以通过将输入电流解耦为直轴电流和交轴电流,并对它们进行独立控制,实现对整流器电流和电压的精确控制。这种控制方法在单相PWM整流器的应用中具有重要的意义,可以提高整流器的性能和效率。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值