leetcode每日一题 2021.3.2
(1)方法一:一维前缀和
这道题采用的第一种方法就是求每一行的前缀和,比如在一个矩阵计算每一层的前n个数的和
在这里刚开始我写的代码一直报错,原因是没有考虑到输入的矩阵可能会空矩阵,当矩阵为空矩阵,在if判断外取matrix[0].size()会陷入死循环并超时。
```cpp
class NumMatrix {
public:
vector<vector<int>> sums;//计算每一行的前缀和
NumMatrix(vector<vector<int>>& matrix) {
int m=matrix.size();
if(m>0)
{
int n=matrix[0].size(); //m和n分被代表行列数
sums.resize ( m , vector<int> (n+1) );
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
sums[i][j+1]=sums[i][j]+matrix[i][j];//分别计算每一行的前缀和
}
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
int ans=0;
for(int i=row1;i<=row2;i++)
{
ans=ans+sums[i][col2+1]-sums[i][col1];
}
return ans;
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/
(2)方法二:二维前缀和
二维的好处在于查找时的复杂度从O(m)降低到了O(1)
class NumMatrix {
public:
vector<vector<int>> sums;//计算每一行的前缀和
NumMatrix(vector<vector<int>>& matrix) {
int m=matrix.size();
if(m>0)
{
int n=matrix[0].size();
//m和n分被代表行列数
sums.resize ( m+1 , vector<int> (n+1) );
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
sums[i+1][j+1]=sums[i][j+1]+sums[i+1][j]-sums[i][j]+matrix[i][j];//分别计算每一行的前缀和
}
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
//int ans=0;
return sums[row2 + 1][col2 + 1] - sums[row1][col2 + 1] - sums[row2 + 1][col1] + sums[row1][col1];
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/