动手学深度学习:4.6 GPU计算

本节介绍了如何使用NVIDIA GPU进行深度学习计算,以提高效率。内容包括确保安装PyTorch GPU版,并展示查看GPU信息的方法。
摘要由CSDN通过智能技术生成

4.6 GPU计算

到目前为止,我们一直在使用CPU计算。对复杂的神经网络和大规模的数据来说,使用CPU来计算可能不够高效。在本节中,我们将介绍如何使用单块NVIDIA GPU来计算。所以需要确保已经安装好了PyTorch GPU版本。准备工作都完成后,下面就可以通过nvidia-smi命令来查看显卡信息了。

!nvidia-smi  # 对Linux/macOS用户有效Copy to clipboardErrorCopied

输出:

Sun Mar 17 14:59:57 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.48                 Driver Version: 390.48                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1050    Off  | 00000000:01:00.0 Off |                  N/A |
| 20%   36C    P5    N/A /  75W |   1223MiB /  2000MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

±----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1235 G /usr/lib/xorg/Xorg 434MiB |
| 0 2095 G compiz 163MiB |
| 0 2660 G /opt/teamviewer/tv_bin/TeamViewer 5MiB |
| 0 4166 G /proc/self/exe 416MiB |
| 0 13274 C /home/tss/anaconda3/bin/python 191MiB |
±----------------------------------------------------------------------------+Copy to clipboardErrorCopied

可以看到我这里只有一块GTX 1050,显存一共只有2000M(太惨了😭)。

4.6.1 计算设备

PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。

torch.cuda.is_available()查看GPU是否可用:

import torch
from torch import nn

torch.cuda.is_available() # 输出 TrueCopy to clipboardErrorCopied

查看GPU数量:

torch.cuda.device_count() # 输出 1Copy to clipboardErrorCopied

查看当前GPU索引号,索引号从0开始:

torch.cuda.current_device() # 输出 0Copy to clipboardErrorCopied

根据索引号查看GPU名字:

torch.cuda.get_device_name(0) # 输出 'GeForce GTX 1050’Copy to clipboardErrorCopied

4.6.2 Tensor的GPU计算

默认情况下,Tensor会被存在内存上。因此,之前我们每次打印Tensor的时候看不到GPU相关标识。

x = torch.tensor([1, 2, 3])
x
Copy to clipboardErrorCopied

输出:

tensor([1, 2, 3])Copy to clipboardErrorCopied

使用.cuda()可以将CPU上的Tensor转换(复制)到GPU上。如果有多块GPU,我们用.cuda(i)来表示第 ii ii从0开始)且cuda(0)cuda()等价。

x = x.cuda(0)
x
Copy to clipboardErrorCopied

输出:

tensor([1, 2, 3], device=‘cuda:0’)Copy to clipboardErrorCopied

我们可以通过Tensordevice属性来查看该Tensor所在的设备。

x.deviceCopy to clipboardErrorCopied

输出:

device(type=‘cuda’, index=0)Copy to clipboardErrorCopied

我们可以直接在创建的时候就指定设备。

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

x = torch.tensor([1, 2, 3], device=device)
# or
x = torch.tensor([1, 2, 3]).to(device)
xCopy to clipboardErrorCopied

输出:

tensor([1, 2, 3], device=‘cuda:0’)Copy to clipboardErrorCopied

如果对在GPU上的数据进行运算,那么结果还是存放在GPU上。

y = x**2
y
Copy to clipboardErrorCopied

输出:

tensor([1, 4, 9], device=‘cuda:0’)Copy to clipboardErrorCopied

需要注意的是,存储在不同位置中的数据是不可以直接进行计算的。即存放在CPU上的数据不可以直接与存放在GPU上的数据进行运算,位于不同GPU上的数据也是不能直接进行计算的。

z = y + x.cpu()Copy to clipboardErrorCopied

会报错:

RuntimeError: Expected object of type torch.cuda.LongTensor but found type torch.LongTensor for argument #3 'other’Copy to clipboardErrorCopied

4.6.3 模型的GPU计算

Tensor类似,PyTorch模型也可以通过.cuda转换到GPU上。我们可以通过检查模型的参数的device属性来查看存放模型的设备。

net = nn.Linear(3, 1)
list(net.parameters())[0].device
Copy to clipboardErrorCopied

输出:

device(type=‘cpu’)Copy to clipboardErrorCopied

可见模型在CPU上,将其转换到GPU上:

net.cuda()
list(net.parameters())[0].device
Copy to clipboardErrorCopied

输出:

device(type=‘cuda’, index=0)Copy to clipboardErrorCopied

同样的,我么需要保证模型输入的Tensor和模型都在同一设备上,否则会报错。

x = torch.rand(2,3).cuda()
net(x)
Copy to clipboardErrorCopied

输出:

tensor([[-0.5800],
[-0.2995]], device=‘cuda:0’, grad_fn=<ThAddmmBackward>)
Copy to clipboardErrorCopied

小结

  • PyTorch可以指定用来存储和计算的设备,如使用内存的CPU或者使用显存的GPU。在默认情况下,PyTorch会将数据创建在内存,然后利用CPU来计算。
  • PyTorch要求计算的所有输入数据都在内存或同一块显卡的显存上。

注:本节与原书此节有一些不同,原书传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值