资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
在一个n*n的棋盘中,每个格子中至多放置一个车,且要保证任何两个车都不能相互攻击,有多少中放法(车与车之间是没有差别的)
输入格式
包含一个正整数n
输出格式
一个整数,表示放置车的方法数
样例输入
2
样例输出
7
数据规模和约定
n<=8
【样例解释】一个车都不放为1种,放置一个车有4种,放置2个车有2种。
题目意思是车辆放置不能同行且不能同列 因此用数组f来表示列的状态 下标表示某一列
#include<bits/stdc++.h>
using namespace std;
int n,f[11],a[11],sum;
void dfs(int step){//行
if(step>n)
return ;
for(int i=1;i<=n;i++){
if(!f[i]){
f[i]=1;//列
sum++;
dfs(step+1);
f[i]=0;
}
}
dfs(step+1);//题目没有说从第一行开始也可以
return ;
}
int main(){
cin>>n;
dfs(1);
cout<<sum+1;//加一个空白的情况
}