注意力机制之ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

  1. SK Attention模块

paper链接:ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

2.模型结构图:

(a) SE块和(b)有效通道注意力(ECA)模块的比较。给定使用全局平均池(GAP)的聚合特性,SE块使用两个FC层计算权重。与之不同的是,ECA通过执行大小为k的快速一维卷积来生成通道权值,其中k通过通道维C的函数自适应地确定。

3.论文主要内容

作者提出了一种新的注意力机制 ECA,它的核心思想是在通道维度上进行注意力计算,而不是在空间维度上计算。具体来说,ECA 通过将通道维度上的特征进行自适应加权,来增强有用的特征,抑制无用的特征,从而提高网络的表示能力和泛化性能。

相对于其他注意力机制,ECA 具有以下优点:

  • 计算效率高:ECA 的计算量比其他注意力机制低得多,因为它只需要对每个通道进行一个全局平均池化,然后经过一个简单的线性变换即可得到注意力权重。

  • 易于优化:ECA 的注意力计算是一种自然的正则化方式,不需要额外的正则化技巧,也不容易过拟合。

  • 适用性强:ECA 可以轻松应用于各种卷积神经网络中,而不需要进行太多的修改和调整。

实验结果表明,ECA 在多个视觉任务上均取得了非常好的性能,包括图像分类、目标检测和语义分割等。因此,ECA 可以作为一种简单而有效的注意力机制,用于提高深度卷积神经网络的性能。

4.代码案例:

import numpy as np
import torch
from torch import nn
from torch.nn import init
from collections import OrderedDict



class ECAAttention(nn.Module):

    def __init__(self, kernel_size=3):
        super().__init__()
        self.gap=nn.AdaptiveAvgPool2d(1)
        self.conv=nn.Conv1d(1,1,kernel_size=kernel_size,padding=(kernel_size-1)//2)
        self.sigmoid=nn.Sigmoid()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        y=self.gap(x) #bs,c,1,1
        y=y.squeeze(-1).permute(0,2,1) #bs,1,c
        y=self.conv(y) #bs,1,c
        y=self.sigmoid(y) #bs,1,c
        y=y.permute(0,2,1).unsqueeze(-1) #bs,c,1,1
        return x*y.expand_as(x)

       

if __name__ == '__main__':
    input=torch.randn(50,512,7,7)
    eca = ECAAttention(kernel_size=3)
    output=eca(input)
    print(output.shape)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果粒橙_LGC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值