2.8.2 矩阵的相似

1 相似矩阵

1.1 定义

A , B \boldsymbol{A},\boldsymbol{B} A,B 是两个 n n n 阶方阵,若存在 n n n 阶可逆矩阵 P \boldsymbol{P} P,使得 P − 1 A P = B \boldsymbol{P}^{-1}\boldsymbol{AP}=\boldsymbol{B} P1AP=B,则称 A \boldsymbol{A} A 相似于 B \boldsymbol{B} B,记作 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB

1.2 性质

  1. A ∼ A \boldsymbol{A} \sim \boldsymbol{A} AA;(反身性)
  2. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB,则 B ∼ A \boldsymbol{B} \sim \boldsymbol{A} BA;(对称性)
  3. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB B ∼ C \boldsymbol{B} \sim \boldsymbol{C} BC,则 A ∼ C \boldsymbol{A} \sim \boldsymbol{C} AC。(传递性)

  1. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB,则:1️⃣ r ( A ) = r ( B ) r(\boldsymbol{A})=r(\boldsymbol{B}) r(A)=r(B),2️⃣ ∣ A ∣ = ∣ B ∣ \begin{vmatrix} \boldsymbol{A} \end{vmatrix} = \begin{vmatrix} \boldsymbol{B} \end{vmatrix} A=B,3️⃣ ∣ λ E − A ∣ = ∣ λ E − B ∣ \begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{A} \end{vmatrix} = \begin{vmatrix} \lambda\boldsymbol{E}-\boldsymbol{B} \end{vmatrix} λEA=λEB,4️⃣ A , B \boldsymbol{A},\boldsymbol{B} A,B 具有相同的特征值。
  2. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB,则:1️⃣ k A ∼ k B k\boldsymbol{A} \sim k\boldsymbol{B} kAkB,2️⃣ A k ∼ B k \boldsymbol{A}^k \sim \boldsymbol{B}^k AkBk,3️⃣ A T ∼ B T \boldsymbol{A}^T \sim \boldsymbol{B}^T ATBT,4️⃣ f ( A ) ∼ f ( B ) f(\boldsymbol{A}) \sim f(\boldsymbol{B}) f(A)f(B);当 A , B \boldsymbol{A},\boldsymbol{B} A,B 可逆时,1️⃣ A ∗ ∼ B ∗ \boldsymbol{A}^* \sim \boldsymbol{B}^* AB,2️⃣ A − 1 ∼ B − 1 \boldsymbol{A}^{-1} \sim \boldsymbol{B}^{-1} A1B1,3️⃣ f ( A ∗ ) ∼ f ( B ∗ ) f(\boldsymbol{A}^*) \sim f(\boldsymbol{B}^*) f(A)f(B),4️⃣ f ( A − 1 ) ∼ f ( B − 1 ) f(\boldsymbol{\boldsymbol{A}^{-1}}) \sim f(\boldsymbol{\boldsymbol{B}^{-1}}) f(A1)f(B1)(其中 f ( x ) f(x) f(x) 是多项式)。
  3. P − 1 A 1 P = B 1 \boldsymbol{P}^{-1}\boldsymbol{A}_1\boldsymbol{P}=\boldsymbol{B}_1 P1A1P=B1 P − 1 A 2 P = B 2 \boldsymbol{P}^{-1}\boldsymbol{A}_2\boldsymbol{P}=\boldsymbol{B}_2 P1A2P=B2,则 P − 1 A 1 A 2 P = P − 1 A 1 P P − 1 A 2 P = B 1 B 2 \boldsymbol{P}^{-1}\boldsymbol{A}_1\boldsymbol{A}_2\boldsymbol{P}=\boldsymbol{P}^{-1}\boldsymbol{A}_1\boldsymbol{P}\boldsymbol{P}^{-1}\boldsymbol{A}_2\boldsymbol{P}=\boldsymbol{B}_1\boldsymbol{B}_2 P1A1A2P=P1A1PP1A2P=B1B2,即 A 1 A 2 ∼ B 1 B 2 \boldsymbol{A}_1\boldsymbol{A}_2 \sim \boldsymbol{B}_1\boldsymbol{B}_2 A1A2B1B2

2 相似对角化

2.1 定义

n n n 阶方阵 A \boldsymbol{A} A,若存在 n n n 阶可逆矩阵 P \boldsymbol{P} P,使得 P − 1 A P = Λ \boldsymbol{P}^{-1}\boldsymbol{AP}=\boldsymbol{\Lambda} P

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值