Stable Diffusion 3.5 Large 文生图在线体验

本文主要分享一个在线体验Stable Diffusion 3.5 Large文生图的项目,并分享SD3.5 Large模型下载链接。

作者已部署Stable Diffusion 3.5 Large到百度飞桨AI Studio平台,以供大家在线体验。

项目链接:Stable Diffusion ComfyUI 在线体验

和以往的SD1.5,SDXL,SC,SD3模型不同,SD3.5 Large模型可以选择性加载1-3个Clip模型(clip_g.safetensors,clip_l.safetensors,t5xxl_fp16.safetensors或 t5xxl_fp8_e4m3fn.safetensors)。

这里推荐使用ComfyUI作者发布的sd3.5_large_fp8_scaled.safetensors模型,sd3.5_large_fp8_scaled.safetensors为内嵌Clip模型的SD3.5 Large模型,无需单独加载Clip模型,以下为效果图(含工作流)。

sd3.5_large_fp8_scaled模型在生图过程中显存峰值占用超过18GB,内存占用约15GB,这里使用V100 32GB显卡运行,1024*1024分辨率下采样速度约1.31s/it。

最后,官方下载链接需要登陆才能下载,这里分享镜像链接:

SD3.5 Large模型:

https://hf-mirror.com/Comfy-Org/stable-diffusion-3.5-fp8/tree/main

https://hf-mirror.com/camenduru/stable-diffusion-3.5-large/tree/main

SD3.5 Large Turbo模型:

https://hf-mirror.com/camenduru/stable-diffusion-3.5-large-turbo/tree/main

### Stable Diffusion 3 Large 的工作原理 #### 模型架构与特点 Stable Diffusion 3 Large 是 Stability AI 发布的最新版本之一,该模型继承并扩展了前代产品的核心优势,在多个方面进行了优化和增强。 #### 编码器的重要性 在一个优秀的文生模型中,编码器是至关重要的组件,其重要性甚至超过了生成模型本身[^3]。编码器负责将输入的文字描述转换成潜在空间中的表示形式,这一过程对于最终像的质量有着决定性的影响。 #### 扩散模型机制 作为一种基于扩散的方法,Stable Diffusion 主要依赖于在形结构上进行信息传递来完成任务。具体来说,中的节点代表着不同的数据样本,而连接这些节点的边则表达了它们之间的关联性。这种方法使得模型能够高效地处理复杂且庞大的数据集合[^2]。 #### 大规模数据集的支持 得益于上述独特的设计思路,即使面对非常大的训练集,Stable Diffusion 也能保持良好的性能表现。这不仅提高了模型的学习效率,同时也增强了它泛化到未见过场景的能力。 ```python import torch from diffusers import StableDiffusionPipeline model_id = "stabilityai/stable-diffusion-3-large" pipeline = StableDiffusionPipeline.from_pretrained(model_id) def generate_image(prompt, num_inference_steps=50): with torch.no_grad(): image = pipeline(prompt=prompt, num_inference_steps=num_inference_steps).images[0] return image ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值