Stable Diffusion | Gradio界面设计及webUI API调用

本文基于webUI API编写了类似于webUI的Gradio交互式界面,支持文生图/图生图(SD1.x,SD2.x,SDXL),Embedding,Lora,X/Y/Z Plot,ADetailer、ControlNet,超分放大(Extras),图片信息读取(PNG Info)。

1. 在线体验

本文代码已部署到百度飞桨AI Studio平台,以供大家在线体验Stable Diffusion ComfyUI/webUI 原版界面及自制Gradio界面。

项目链接:Stable Diffusion webUI 在线体验

2. 自制Gradio界面展示

文生图界面:

Adetailer 设置界面:

ControlNet 设置界面:

X/Y/Z Plot 设置界面:

图生图界面:

图片放大界面:

图片信息读取界面:

3. Gradio界面设计及webUI API调用

import base64
import datetime
import io
import os
import re
import subprocess
import gradio as gr
import requests
from PIL import Image, PngImagePlugin

design_mode = 1
save_images = "Yes"
url = "http://127.0.0.1:7860"
if design_mode == 0:
    cmd = "netstat -tulnp"
    netstat_output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout.splitlines()
    for i in netstat_output:
        if "stable-diffus" in i:
            port = int(re.findall(r'\d+', i)[6])
            url = f"http://127.0.0.1:{port}"
output_dir = os.getcwd() + "/output/" + datetime.date.today().strftime("%Y-%m-%d")
os.makedirs(output_dir, exist_ok=True)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"

default = {
    "prompt": "(best quality:1), (high quality:1), detailed/(extreme, highly, ultra/), realistic, 1girl/(beautiful, delicate, perfect/)",
    "negative_prompt": "(worst quality:1), (low quality:1), (normal quality:1), lowres, signature, blurry, watermark, duplicate, bad link, plump, bad anatomy, extra arms, extra digits, missing finger, bad hands, bad feet, deformed, error, mutation, text",
    "clip_skip": 1,
    "width": 512,
    "height": 768,
    "size_step": 64,
    "steps": 20,
    "cfg": 7,
    "ad_nums": 2,
    "ad_model": ["face_yolov8n.pt", "hand_yolov8n.pt"],
    "cn_nums": 3,
    "cn_type": "Canny",
    "gallery_height": 600,
    "lora_weight": 0.8,
    "hidden_models": ["stable_cascade_stage_c", "stable_cascade_stage_b", "svd_xt_1_1", "control_v11p_sd15_canny", "control_v11f1p_sd15_depth", "control_v11p_sd15_openpose"]
}

samplers = []
response = requests.get(url=f"{url}/sdapi/v1/samplers").json()
for i in range(len(response)):
    samplers.append(response[i]["name"])

schedulers = []
response = requests.get(url=f"{url}/sdapi/v1/schedulers").json()
for i in range(len(response)):
    schedulers.append(response[i]["label"])

upscalers = []
response = requests.get(url=f"{url}/sdapi/v1/upscalers").json()
for i in range(len(response)):
    upscalers.append(response[i]["name"])

sd_models = []
sd_models_list = {}
response = requests.get(url=f"{url}/sdapi/v1/sd-models").json()
for i in range(len(response)):
    path, sd_model = os.path.split(response[i]["title"])
    sd_model_name, sd_model_extension = os.path.splitext(sd_model)
    if not sd_model_name in default["hidden_models"]:
        sd_models.append(sd_model)
        sd_models_list[sd_model] = response[i]["title"]
sd_models = sorted(sd_models)

sd_vaes = ["Automatic", "None"]
response = requests.get(url=f"{url}/sdapi/v1/sd-vae").json()
for i in range(len(response)):
    sd_vaes.append(response[i]["model_name"])

embeddings = []
response = requests.get(url=f"{url}/sdapi/v1/embeddings").json()
for key in response["loaded"]:
    embeddings.append(key)

extensions = []
response = requests.get(url=f"{url}/sdapi/v1/extensions").json()
for i in range(len(response)):
    extensions.append(response[i]["name"])

loras = []
loras_name = {}
loras_activation_text = {}
response = requests.get(url=f"{url}/sdapi/v1/loras").json()
for i in range(len(response)):
    lora_name = response[i]["name"]
    lora_info = requests.get(url=f"{url}/tacapi/v1/lora-info/{lora_name}").json()
    if lora_info and "sd version" in lora_info:
        lora_type = lora_info["sd version"]
        lora_name_type = f"{lora_name} ({lora_type})"
    else:
        lora_name_type = f"{lora_name}"
    loras.append(lora_name_type)
    loras_name[lora_name_type] = lora_name
    if "activation text" in loras_activation_text:
        loras_activation_text[lora_name_type] = lora_info["activation text"]

xyz_args = {}
xyz_plot_types = {}
last_choice = "Size"
response = requests.get(url=f"{url}/sdapi/v1/script-info").json()
for i in range(len(response)):
    if response[i]["name"] == "x/y/z plot":
        if response[i]["is_img2img"] == False:
            xyz_plot_types["txt2img"] = response[i]["args"][0]["choices"]
            choice_index = xyz_plot_types["txt2img"].index(last_choice) + 1
            xyz_plot_types["txt2img"] = xyz_plot_types["txt2img"][:choice_index]
        else:
            xyz_plot_types["img2img"] = response[i]["args"][0]["choices"]
            choice_index = xyz_plot_types["img2img"].index(last_choice) + 1
            xyz_plot_types["img2img"] = xyz_plot_types["img2img"][:choice_index]

if "adetailer" in extensions:
    ad_args = {"txt2img": {}, "img2img": {}}
    ad_skip_img2img = False
    ad_models = ["None"]
    response = requests.get(url=f"{url}/adetailer/v1/ad_model").json()
    for key in response["ad_model"]:
        ad_models.append(key)

if "sd-webui-controlnet" in extensions:
    cn_args = {"txt2img": {}, "img2img": {}}
    cn_types = []
    cn_types_list = {}
    response = requests.get(url=f"{url}/controlnet/control_types").json()
    for key in response["control_types"]:
        cn_types.append(key)
        cn_types_list[key] = response["control_types"][key]
    cn_default_type = default["cn_type"]
    cn_module_list = cn_types_list[cn_default_type]["module_list"]
    cn_model_list = cn_types_list[cn_default_type]["model_list"]
    cn_default_option = cn_types_list[cn_default_type]["default_option"]
    cn_default_model = cn_types_list[cn_default_type]["default_model"]

def save_image(image, part1, part2):
    counter = 1
    image_name = f"{part1}-{part2}-{counter}.png"
    while os.path.exists(os.path.join(output_dir, image_name)):
        counter += 1
        image_name = f"{part1}-{part2}-{counter}.png"
    image_path = os.path.join(output_dir, image_name)
    image_metadata = PngImagePlugin.PngInfo()
    for key, value in image.info.items():
        if isinstance(key, str) and isinstance(value, str):
            image_metadata.add_text(key, value)
    image.save(image_path, format="PNG", pnginfo=image_metadata)

def pil_to_base64(image_pil):
    buffer = io.BytesIO()
    image_pil.save(buffer, format="png")
    image_buffer = buffer.getbuffer()
    image_base64 = base64.b64encode(image_buffer).decode("utf-8")
    return image_base64

def base64_to_pil(image_base64):
    image_binary = base64.b64decode(image_base64)
    image_pil = Image.open(io.BytesIO(image_binary))
    return image_pil

def format_prompt(prompt):
    prompt = re.sub(r"\s+,", ",", prompt)
    prompt = re.sub(r"\s+", " ", prompt)
    prompt = re.sub(",,+", ",", prompt)
    prompt = re.sub(",", ", ", prompt)
    prompt = re.sub(r"\s+", " ", prompt)
    prompt = re.sub(r"^,", "", prompt)
    prompt = re.sub(r"^ ", "", prompt)
    prompt = re.sub(r" $", "", prompt)
    prompt = re.sub(r",$", "", prompt)
    prompt = re.sub(": ", ":", prompt)
    return prompt

def post_interrupt():
    global interrupt
    interrupt = True
    requests.post(url=f"{url}/sdapi/v1/interrupt").json()

def gr_update_visible(visible):
    return gr.update(visible=visible)

def ordinal(n: int) -> str:
    d = {1: "st", 2: "nd", 3: "rd"}
    return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))

def add_lora(prompt, lora):
    lora_weight = default["lora_weight"]
    prompt = re.sub(r"<[^<>]+>", "", prompt)
    for elem in loras_activation_text:
        prompt = re.sub(loras_activation_text[elem], "", prompt)
    prompt = format_prompt(prompt)
    for elem in lora:
        lora_name = loras_name[elem]
        if elem in loras_activation_text:
            lora_activation_text = loras_activation_text[elem]
        else:
            lora_activation_text = ""
        if lora_activation_text == "":
            prompt = f"{prompt}, <lora:{lora_name}:{lora_weight}>"
        else:
            prompt = f"{prompt}, <lora:{lora_name}:{lora_weight}> {lora_activation_text}"
    return prompt

def add_embedding(negative_prompt, embedding):
    for elem in embeddings:
        negative_prompt = re.sub(f"{elem},", "", negative_prompt)
    negative_prompt = format_prompt(negative_prompt)
    for elem in embedding[::-1]:
        negative_prompt = f"{elem}, {negative_prompt}"
    return negative_prompt

def add_xyz_plot(payload, gen_type):
    global xyz_args
    if gen_type in xyz_args:
        payload["script_name"] = "X/Y/Z plot"
        payload["script_args"] = xyz_args[gen_type]
    return payload

def xyz_update_args(*args):
    gen_type, enable_xyz_plot, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode = args
    global xyz_args
    x_type = xyz_plot_types[gen_type].index(x_type)
    y_type = xyz_plot_types[gen_type].index(y_type)
    z_type = xyz_plot_types[gen_type].index(z_type)
    args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
    if enable_xyz_plot == True:
        xyz_args[gen_type] = args
    else:
        del xyz_args[gen_type]

def xyz_update_choices(xyz_type):
    choices = []
    if xyz_type == "Checkpoint name":
        choices = sd_models
    if xyz_type == "VAE":
        choices = sd_vaes
    if xyz_type == "Sampler":
        choices = samplers
    if xyz_type == "Schedule type":
        choices = schedulers
    if xyz_type == "Hires sampler":
        choices = samplers
    if xyz_type == "Hires upscaler":
        choices = upscalers
    if xyz_type == "Always discard next-to-last sigma":
        choices = ["False", "True"]
    if xyz_type == "SGM noise multiplier":
        choices = ["False", "True"]
    if xyz_type == "Refiner checkpoint":
        choices = sd_models
    if xyz_type == "RNG source":
        choices = ["GPU", "CPU", "NV"]
    if xyz_type == "FP8 mode":
        choices = ["Disable", "Enable for SDXL", "Enable"]
    if choices == []:
        return gr.update(visible=True, value=None), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True, choices=choices)

def xyz_blocks(gen_type):
    with gr.Blocks() as demo:
        with gr.Row():
            xyz_gen_type = gr.Textbox(visible=False, value=gen_type)
            enable_xyz_plot = gr.Checkbox(label="Enable")
        with gr.Row():
            x_type = gr.Dropdown(xyz_plot_types[gen_type], label="X type", value=xyz_plot_types[gen_type][1])
            x_values = gr.Textbox(label="X values", lines=1)
            x_values_dropdown = gr.Dropdown(label="X values", visible=False, multiselect=True, interactive=True)
        with gr.Row():
            y_type = gr.Dropdown(xyz_plot_types[gen_type], label="Y type", value=xyz_plot_types[gen_type][0])
            y_values = gr.Textbox(label="Y values", lines=1)
            y_values_dropdown = gr.Dropdown(label="Y values", visible=False, multiselect=True, interactive=True)
        with gr.Row():
            z_type = gr.Dropdown(xyz_plot_types[gen_type], label="Z type", value=xyz_plot_types[gen_type][0])
            z_values = gr.Textbox(label="Z values", lines=1)
            z_values_dropdown = gr.Dropdown(label="Z values", visible=False, multiselect=True, interactive=True)
        with gr.Row():
            with gr.Column():
                draw_legend = gr.Checkbox(label='Draw legend', value=True)
                no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
                vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False)
                vary_seeds_y = gr.Checkbox(label='Vary seeds for Y', value=False)
                vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False)
            with gr.Column():
                include_lone_images = gr.Checkbox(label='Include Sub Images', value=True)
                include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False)
                csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False)
                margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2)
        x_type.change(fn=xyz_update_choices, inputs=x_type, outputs=[x_values, x_values_dropdown])
        y_type.change(fn=xyz_update_choices, inputs=y_type, outputs=[y_values, y_values_dropdown])
        z_type.change(fn=xyz_update_choices, inputs=z_type, outputs=[z_values, z_values_dropdown])
        xyz_inputs = [xyz_gen_type, enable_xyz_plot, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]
        for gr_block in xyz_inputs:
            if type(gr_block) is gr.components.slider.Slider:
                gr_block.release(fn=xyz_update_args, inputs=xyz_inputs, outputs=None)
            else:
                gr_block.change(fn=xyz_update_args, inputs=xyz_inputs, outputs=None)
    return demo

def add_adetailer(payload, gen_type):
    global ad_args, ad_skip_img2img
    args = ad_args[gen_type]
    args = dict(sorted(args.items(), key=lambda x: x[0]))
    payload["alwayson_scripts"]["adetailer"] = {"args": []}
    if args == {}:
        return payload
    if gen_type == "img2img":
        payload["alwayson_scripts"]["adetailer"]["args"] = [True, ad_skip_img2img]
    else:
        payload["alwayson_scripts"]["adetailer"]["args"] = [True, False]
    for i in args:
        payload["alwayson_scripts"]["adetailer"]["args"].append(args[i])
    return payload

def ad_update_args(*args):
    if "sd-webui-controlnet" in extensions:
        ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face, ad_controlnet_model, ad_controlnet_module, ad_controlnet_weight, ad_controlnet_guidance_start, ad_controlnet_guidance_end = args
    else:
        ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face = args
    global ad_args
    args = {
        "ad_model": ad_model,
        "ad_model_classes": "",
        "ad_prompt": ad_prompt,
        "ad_negative_prompt": ad_negative_prompt,
        "ad_confidence": ad_confidence,
        "ad_mask_k_largest": ad_mask_k_largest,
        "ad_mask_min_ratio": ad_mask_min_ratio,
        "ad_mask_max_ratio": ad_mask_max_ratio,
        "ad_dilate_erode": ad_dilate_erode,
        "ad_x_offset": ad_x_offset,
        "ad_y_offset": ad_y_offset,
        "ad_mask_merge_invert": ad_mask_merge_invert,
        "ad_mask_blur": ad_mask_blur,
        "ad_denoising_strength": ad_denoising_strength,
        "ad_inpaint_only_masked": ad_inpaint_only_masked,
        "ad_inpaint_only_masked_padding": ad_inpaint_only_masked_padding,
        "ad_use_inpaint_width_height": ad_use_inpaint_width_height,
        "ad_inpaint_width": ad_inpaint_width,
        "ad_inpaint_height": ad_inpaint_height,
        "ad_use_steps": ad_use_steps,
        "ad_steps": ad_steps,
        "ad_use_cfg_scale": ad_use_cfg_scale,
        "ad_cfg_scale": ad_cfg_scale,
        "ad_use_checkpoint": ad_use_checkpoint,
        "ad_checkpoint": ad_checkpoint,
        "ad_use_vae": ad_use_vae,
        "ad_vae": ad_vae,
        "ad_use_sampler": ad_use_sampler,
        "ad_sampler": ad_sampler,
        "ad_scheduler": ad_scheduler,
        "ad_use_noise_multiplier": ad_use_noise_multiplier,
        "ad_noise_multiplier": ad_noise_multiplier,
        "ad_use_clip_skip": ad_use_clip_skip,
        "ad_clip_skip": ad_clip_skip,
        "ad_restore_face": ad_restore_face,
    }
    if "sd-webui-controlnet" in extensions:
        args["ad_controlnet_model"] = ad_controlnet_model
        args["ad_controlnet_module"] = ad_controlnet_module
        args["ad_controlnet_weight"] = ad_controlnet_weight
        args["ad_controlnet_guidance_start"] = ad_controlnet_guidance_start
        args["ad_controlnet_guidance_end"] = ad_controlnet_guidance_end
    if enable_ad == True:
        ad_args[ad_gen_type][ad_num] = args
    else:
        del ad_args[ad_gen_type][ad_num]

def ad_update_cn_module_choices(ad_controlnet_model):
    if ad_controlnet_model == "control_v11f1p_sd15_depth [1a8eb83c]":
        return gr.update(choices=["depth_midas", "depth_hand_refiner"], visible=True, value="depth_midas")
    if ad_controlnet_model == "control_v11p_sd15_inpaint [dfe64acb]":
        return gr.update(choices=["inpaint_global_harmonious", "inpaint_only", "inpaint_only+lama"], visible=True, value="inpaint_global_harmonious")
    if ad_controlnet_model == "control_v11p_sd15_lineart [2c3004a6]":
        return gr.update(choices=["lineart_coarse", "lineart_realistic", "lineart_anime", "lineart_anime_denoise"], visible=True, value="lineart_coarse")
    if ad_controlnet_model == "control_v11p_sd15_openpose [52e0ea54]":
        return gr.update(choices=["openpose_full", "dw_openpose_full"], visible=True, value="openpose_full")
    if ad_controlnet_model == "control_v11p_sd15_scribble [46a6fcd7]":
        return gr.update(choices=["t2ia_sketch_pidi"], visible=True, value="t2ia_sketch_pidi")
    if ad_controlnet_model == "control_v11p_sd15s2_lineart_anime [19a26aa8]":
        return gr.update(choices=["lineart_coarse", "lineart_realistic", "lineart_anime", "lineart_anime_denoise"], visible=True, value="lineart_coarse")
    return gr.update(visible=False)

def ad_update_skip_img2img(arg):
    global ad_skip_img2img
    ad_skip_img2img = arg

def ad_blocks(i, gen_type):
    with gr.Blocks() as demo:
        ad_gen_type = gr.Textbox(visible=False, value=gen_type)
        ad_num = gr.Textbox(visible=False, value=i)
        enable_ad = gr.Checkbox(label="Enable")
        ad_model = gr.Dropdown(ad_models, label="ADetailer model", value=default["ad_model"][i])
        ad_prompt = gr.Textbox(show_label=False, placeholder="ADetailer prompt" + "\nIf blank, the main prompt is used.", lines=3)
        ad_negative_prompt = gr.Textbox(show_label=False, placeholder="ADetailer negative prompt" + "\nIf blank, the main negative prompt is used.", lines=3)
        with gr.Tab("Detection"):
            with gr.Row():
                ad_confidence = gr.Slider(label="Detection model confidence threshold", minimum=0, maximum=1, step=0.01, value=0.3)
                ad_mask_min_ratio = gr.Slider(label="Mask min area ratio", minimum=0, maximum=1, step=0.001, value=0)
            with gr.Row():
                ad_mask_k_largest = gr.Slider(label="Mask only the top k largest (0 to disable)", minimum=0, maximum=10, step=1, value=0)
                ad_mask_max_ratio = gr.Slider(label="Mask max area ratio", minimum=0, maximum=1, step=0.001, value=1)
        with gr.Tab("Mask Preprocessing"):
            with gr.Row():
                ad_x_offset = gr.Slider(label="Mask x(→) offset", minimum=-200, maximum=200, step=1, value=0)
                ad_y_offset = gr.Slider(label="Mask y(↑) offset", minimum=-200, maximum=200, step=1, value=0)
            ad_dilate_erode = gr.Slider(label="Mask erosion (-) / dilation (+)", minimum=-128, maximum=128, step=4, value=4)
            ad_mask_merge_invert = gr.Radio(["None", "Merge", "Merge and Invert"], label="Mask merge mode", value="None")
        with gr.Tab("Inpainting"):
            with gr.Row():
                ad_mask_blur = gr.Slider(label="Inpaint mask blur", minimum=0, maximum=64, step=1, value=4)
                ad_denoising_strength = gr.Slider(label="Inpaint denoising strength", minimum=0, maximum=1, step=0.01, value=0.4)
            with gr.Row():
                ad_inpaint_only_masked = gr.Checkbox(label="Inpaint only masked", value=True)
                ad_use_inpaint_width_height = gr.Checkbox(label="Use separate width/height")
            with gr.Row():
                ad_inpaint_only_masked_padding = gr.Slider(label="Inpaint only masked padding, pixels", minimum=0, maximum=256, step=4, value=32)
                with gr.Column():
                    ad_inpaint_width = gr.Slider(label="inpaint width", minimum=64, maximum=2048, step=default["size_step"], value=512)
                    ad_inpaint_height = gr.Slider(label="inpaint height", minimum=64, maximum=2048, step=default["size_step"], value=512)
            with gr.Row():
                ad_use_steps = gr.Checkbox(label="Use separate steps")
                ad_use_cfg_scale = gr.Checkbox(label="Use separate CFG scale")
            with gr.Row():
                ad_steps = gr.Slider(label="ADetailer steps", minimum=1, maximum=150, step=1, value=28)
                ad_cfg_scale = gr.Slider(label="ADetailer CFG scale", minimum=0,  maximum=30, step=0.5, value=7)
            with gr.Row():
                ad_use_checkpoint = gr.Checkbox(label="Use separate checkpoint")
                ad_use_vae = gr.Checkbox(label="Use separate VAE")
            with gr.Row():
                ckpts = ["Use same checkpoint"]
                for model in sd_models:
                    ckpts.append(model)
                ad_checkpoint = gr.Dropdown(ckpts, label="ADetailer checkpoint", value=ckpts[0])
                vaes = ["Use same VAE"]
                for vae in sd_vaes:
                    vaes.append(vae)
                ad_vae = gr.Dropdown(vaes, label="ADetailer VAE", value=vaes[0])
            ad_use_sampler = gr.Checkbox(label="Use separate sampler")
            with gr.Row():
                ad_sampler = gr.Dropdown(samplers, label="ADetailer sampler", value=samplers[0])
                scheduler_names = ["Use same scheduler"]
                for scheduler in schedulers:
                    scheduler_names.append(scheduler)
                ad_scheduler = gr.Dropdown(scheduler_names, label="ADetailer scheduler", value=scheduler_names[0])
            with gr.Row():
                ad_use_noise_multiplier = gr.Checkbox(label="Use separate noise multiplier")
                ad_use_clip_skip = gr.Checkbox(label="Use separate CLIP skip")
            with gr.Row():
                ad_noise_multiplier = gr.Slider(label="Noise multiplier for img2img", minimum=0.5, maximum=1.5, step=0.01, value=1)
                ad_clip_skip = gr.Slider(label="ADetailer CLIP skip", minimum=1, maximum=12, step=1, value=1)
            ad_restore_face = gr.Checkbox(label="Restore faces after ADetailer")
        if "sd-webui-controlnet" in extensions:
            with gr.Tab("ControlNet"):
                with gr.Row():
                    ad_cn_models = ["None", "Passthrough", "control_v11f1p_sd15_depth [1a8eb83c]", "control_v11p_sd15_inpaint [dfe64acb]", "control_v11p_sd15_lineart [2c3004a6]", "control_v11p_sd15_openpose [52e0ea54]", "control_v11p_sd15_scribble [46a6fcd7]", "control_v11p_sd15s2_lineart_anime [19a26aa8]"]
                    ad_controlnet_model = gr.Dropdown(ad_cn_models, label="ControlNet model", value="None")
                    ad_controlnet_module = gr.Dropdown(["None"], label="ControlNet module", value="None", visible=False)
                    ad_controlnet_model.change(fn= ad_update_cn_module_choices, inputs=ad_controlnet_model, outputs=ad_controlnet_module)
                with gr.Row():
                    ad_controlnet_weight = gr.Slider(label="Control Weight", minimum=0, maximum=1, step=0.01, value=1)
                    ad_controlnet_guidance_start = gr.Slider(label="Starting Control Step", minimum=0, maximum=1, step=0.01, value=0)
                    ad_controlnet_guidance_end = gr.Slider(label="Ending Control Step", minimum=0, maximum=1, step=0.01, value=1)
        if "sd-webui-controlnet" in extensions:
            ad_inputs = [ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face, ad_controlnet_model, ad_controlnet_module, ad_controlnet_weight, ad_controlnet_guidance_start, ad_controlnet_guidance_end]
        else:
            ad_inputs = [ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face]
        for gr_block in ad_inputs:
            if type(gr_block) is gr.components.slider.Slider:
                gr_block.release(fn=ad_update_args, inputs=ad_inputs, outputs=None)
            else:
                gr_block.change(fn=ad_update_args, inputs=ad_inputs, outputs=None)
    return demo

def add_controlnet(payload, gen_type):
    global cn_args
    args = cn_args[gen_type]
    args = dict(sorted(args.items(), key=lambda x: x[0]))
    payload["alwayson_scripts"]["controlnet"] = {"args": []}
    if args == {}:
        return payload
    for i in args:
        payload["alwayson_scripts"]["controlnet"]["args"].append(args[i])
    return payload

def cn_preprocess(cn_module, cn_input_image):
    if cn_input_image is None:
        return None
    cn_input_image = pil_to_base64(cn_input_image)
    payload = {
        "controlnet_module": cn_module,
        "controlnet_input_images": [cn_input_image]
    }
    response = requests.post(url=f"{url}/controlnet/detect", json=payload)
    images_base64 = response.json()["images"][0]
    image_pil = base64_to_pil(images_base64)
    if save_images == "Yes":
        save_image(image_pil, "ControlNet", "detect")
    return image_pil

def cn_update_args(*args):
    cn_gen_type, cn_num, enable_cn, enable_low_vram, enable_pixel_perfect, cn_module, cn_model, cn_input_image, cn_mask, cn_weight, cn_guidance_start, cn_guidance_end, cn_resolution, cn_control_mode, cn_resize_mode = args
    global cn_args
    if not cn_input_image is None:
        cn_input_image = pil_to_base64(cn_input_image)
    if not cn_mask is None:
        cn_mask = pil_to_base64(cn_mask)
    args = {
        "input_image": cn_input_image,
        "module": cn_module,
        "model": cn_model,
        "low_vram": enable_low_vram,
        "pixel_perfect": enable_pixel_perfect,
        "mask": cn_mask,
        "weight": cn_weight,
        "guidance_start": cn_guidance_start,
        "guidance_end": cn_guidance_end,
        "processor_res": cn_resolution,
        "control_mode": cn_control_mode,
        "resize_mode": cn_resize_mode
    }
    if enable_cn == True:
        cn_args[cn_gen_type][cn_num] = args
    else:
        del cn_args[cn_gen_type][cn_num]

def cn_update_choices(cn_type):
    module_list = cn_types_list[cn_type]["module_list"]
    model_list = cn_types_list[cn_type]["model_list"]
    default_option = cn_types_list[cn_type]["default_option"]
    default_model = cn_types_list[cn_type]["default_model"]
    return gr.update(choices=module_list, value=default_option), gr.update(choices=model_list, value=default_model)

def cn_blocks(i, gen_type):
    with gr.Blocks() as demo:
        with gr.Row():
            cn_gen_type = gr.Textbox(visible=False, value=gen_type)
            cn_num = gr.Textbox(visible=False, value=i)
            enable_cn = gr.Checkbox(label="Enable")
            enable_low_vram = gr.Checkbox(label="Low VRAM")
            enable_pixel_perfect = gr.Checkbox(label="Pixel Perfect")
            enable_mask_upload = gr.Checkbox(label="Effective Region Mask")
        with gr.Row():
            cn_type = gr.Dropdown(cn_types, label="ControlNet type", value=cn_default_type)
            cn_btn = gr.Button("Preprocess | 预处理", elem_id="button")
        with gr.Row():
            cn_module = gr.Dropdown(cn_module_list, label="ControlNet module", value=cn_default_option)
            cn_model = gr.Dropdown(cn_model_list, label="ControlNet model", value=cn_default_model)
        with gr.Row():
            cn_input_image = gr.Image(type="pil")
            cn_detect_image = gr.Image(label="Preprocessor Preview")
            cn_mask = gr.Image(label="Effective Region Mask", interactive=True, visible=False)
        with gr.Row():
            cn_weight = gr.Slider(label="Control Weight", minimum=0, maximum=2, step=0.05, value=1)
            cn_guidance_start = gr.Slider(label="Starting Control Step", minimum=0, maximum=1, step=0.01, value=0)
            cn_guidance_end = gr.Slider(label="Ending Control Step", minimum=0, maximum=1, step=0.01, value=1)
        cn_resolution = gr.Slider(label="Resolution", minimum=64, maximum=2048, step=default["size_step"], value=512)
        cn_control_mode = gr.Radio(["Balanced", "My prompt is more important", "ControlNet is more important"], label="Control Mode", value="Balanced")
        cn_resize_mode = gr.Radio(["Just Resize", "Crop and Resize", "Resize and Fill"], label="Resize Mode", value="Crop and Resize")
        enable_mask_upload.change(fn=gr_update_visible, inputs=enable_mask_upload, outputs=cn_mask)
        cn_type.change(fn=cn_update_choices, inputs=cn_type, outputs=[cn_module, cn_model])
        cn_btn.click(fn=cn_preprocess, inputs=[cn_module, cn_input_image], outputs=cn_detect_image)
        cn_inputs = [cn_gen_type, cn_num, enable_cn, enable_low_vram, enable_pixel_perfect, cn_module, cn_model, cn_input_image, cn_mask, cn_weight, cn_guidance_start, cn_guidance_end, cn_resolution, cn_control_mode, cn_resize_mode]
        for gr_block in cn_inputs:
            if type(gr_block) is gr.components.slider.Slider:
                gr_block.release(fn=cn_update_args, inputs=cn_inputs, outputs=None)
            else:
                gr_block.change(fn=cn_update_args, inputs=cn_inputs, outputs=None)
    return demo

def generate(input_image, sd_model, sd_vae, sampler_name, scheduler, clip_skip, steps, width, batch_size, height, batch_count, cfg_scale, randn_source, seed, denoising_strength, prompt, negative_prompt, progress=gr.Progress()):
    global interrupt, xyz_args
    interrupt = False
    if denoising_strength >= 0:
        gen_type = "img2img"
        if input_image is None:
            return None, None, None
    else:
        gen_type = "txt2img"
    progress(0, desc=f"Loading {sd_model}")
    payload = {
        "sd_model_checkpoint": sd_models_list[sd_model],
        "sd_vae": sd_vae,
        "CLIP_stop_at_last_layers": clip_skip,
        "randn_source": randn_source
    }
    requests.post(url=f"{url}/sdapi/v1/options", json=payload)
    if interrupt == True:
            return None, None, None
    progress(0, desc="Processing...")
    images = []
    images_info = []
    if not input_image is None:
        input_image = pil_to_base64(input_image)
    for i in range(batch_count):
        payload = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "batch_size": batch_size,
            "seed": seed,
            "sampler_name": sampler_name,
            "scheduler": scheduler,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "width": width,
            "height": height,
            "init_images": [input_image],
            "denoising_strength": denoising_strength,
            "alwayson_scripts": {}
        }
        if "adetailer" in extensions:
            payload = add_adetailer(payload, gen_type)
        if "sd-webui-controlnet" in extensions:
            payload = add_controlnet(payload, gen_type)
        payload = add_xyz_plot(payload, gen_type)
        response = requests.post(url=f"{url}/sdapi/v1/{gen_type}", json=payload)
        images_base64 = response.json()["images"]
        for j in range(len(images_base64)):
            image_pil = base64_to_pil(images_base64[j])
            images.append(image_pil)
            image_info = get_png_info(image_pil)
            images_info.append(image_info)
            if image_info == "None":
                if save_images == "Yes":
                    if gen_type in xyz_args:
                        save_image(image_pil, "XYZ_Plot", "grid")
                    else:
                        save_image(image_pil, "ControlNet", "detect")
            else:
                seed = re.findall("Seed: [0-9]+", image_info)[0].split(": ")[-1]
                if save_images == "Yes":
                    save_image(image_pil, sd_model, seed)
        seed = int(seed) + 1
        progress((i+1)/batch_count, desc=f"Batch count: {(i+1)}/{batch_count}")
        if interrupt == True:
            return images, images_info, datetime.datetime.now()
    return images, images_info, datetime.datetime.now()

def gen_clear_geninfo():
    return None

def gen_update_geninfo(images_info):
    if images_info == [] or images_info is None:
        return None
    return images_info[0]

def gen_update_selected_geninfo(images_info, evt: gr.SelectData):
    return images_info[evt.index]

def gen_blocks(gen_type):
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(placeholder="Prompt", show_label=False, value=default["prompt"], lines=3)
                negative_prompt = gr.Textbox(placeholder="Negative prompt", show_label=False, value=default["negative_prompt"], lines=3)
                if gen_type == "txt2img":
                    input_image = gr.Image(visible=False)
                else:
                    input_image = gr.Image(type="pil")

                with gr.Tab("Generation"):
                    with gr.Row():
                        sd_model = gr.Dropdown(sd_models, label="SD Model", value=sd_models[0])
                        sd_vae = gr.Dropdown(sd_vaes, label="SD VAE", value=sd_vaes[0])
                        clip_skip = gr.Slider(minimum=1, maximum=12, step=1, label="Clip skip", value=default["clip_skip"])
                    with gr.Row():
                        sampler_name = gr.Dropdown(samplers, label="Sampling method", value=samplers[0])
                        scheduler = gr.Dropdown(schedulers, label="Schedule type", value=schedulers[0])
                        steps = gr.Slider(minimum=1, maximum=100, step=1, label="Sampling steps", value=default["steps"])
                    with gr.Row():
                        width = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Width", value=default["width"])
                        batch_size = gr.Slider(minimum=1, maximum=8, step=1, label="Batch size", value=1)
                    with gr.Row():
                        height = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Height", value=default["height"])
                        batch_count = gr.Slider(minimum=1, maximum=100, step=1, label="Batch count", value=1)
                    with gr.Row():
                        cfg_scale = gr.Slider(minimum=1, maximum=30, step=0.5, label="CFG Scale", value=default["cfg"])
                        if gen_type == "txt2img":
                            denoising_strength = gr.Slider(minimum=-1, maximum=1, step=1, value=-1, visible=False)
                        else:
                            denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.7)
                    with gr.Row():
                        randn_source = gr.Dropdown(["CPU", "GPU"], label="RNG", value="CPU")
                        seed = gr.Textbox(label="Seed", value=-1)

                if "adetailer" in extensions:
                    with gr.Tab("ADetailer"):
                        if gen_type == "img2img":
                            with gr.Row():
                                ad_skip_img2img = gr.Checkbox(label="Skip img2img", visible=True)
                                ad_skip_img2img.change(fn=ad_update_skip_img2img, inputs=ad_skip_img2img, outputs=None)
                        for i in range(default["ad_nums"]):
                            with gr.Tab(f"ADetailer {ordinal(i + 1)}"): ad_blocks(i, gen_type)

                if "sd-webui-controlnet" in extensions:
                    with gr.Tab("ControlNet"):
                        for i in range(default["cn_nums"]):
                            with gr.Tab(f"ControlNet Unit {i}"): cn_blocks(i, gen_type)

                if not loras == [] or not embeddings == []:
                    with gr.Tab("Extra Networks"):
                        if not loras == []:
                            lora = gr.Dropdown(loras, label="Lora", multiselect=True, interactive=True)
                            lora.change(fn=add_lora, inputs=[prompt, lora], outputs=prompt)
                        if not embeddings == []:
                            embedding = gr.Dropdown(embeddings, label="Embedding", multiselect=True, interactive=True)
                            embedding.change(fn=add_embedding, inputs=[negative_prompt, embedding], outputs=negative_prompt)

                with gr.Tab("X/Y/Z plot"): xyz_blocks(gen_type)

            with gr.Column():
                with gr.Row():
                    btn = gr.Button("Generate | 生成", elem_id="button")
                    btn2 = gr.Button("Interrupt | 终止")
                gallery = gr.Gallery(preview=True, height=default["gallery_height"])
                image_geninfo = gr.Markdown()
                images_geninfo = gr.State()
                update_geninfo = gr.Textbox(visible=False)
            gen_inputs = [input_image, sd_model, sd_vae, sampler_name, scheduler, clip_skip, steps, width, batch_size, height, batch_count, cfg_scale, randn_source, seed, denoising_strength, prompt, negative_prompt]
            btn.click(fn=gen_clear_geninfo, inputs=None, outputs=image_geninfo)
            btn.click(fn=generate, inputs=gen_inputs, outputs=[gallery, images_geninfo, update_geninfo])
            btn2.click(fn=post_interrupt, inputs=None, outputs=None)
            gallery.select(fn=gen_update_selected_geninfo, inputs=images_geninfo, outputs=image_geninfo)
            update_geninfo.change(fn=gen_update_geninfo, inputs=images_geninfo, outputs=image_geninfo)
    return demo

def extras(input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight):
    if input_image is None:
        return None
    input_image = pil_to_base64(input_image)
    if enable_gfpgan == False:
        gfpgan_visibility = 0
    if enable_codeformer == False:
        codeformer_visibility = 0
    payload = {
        "gfpgan_visibility": gfpgan_visibility,
        "codeformer_visibility": codeformer_visibility,
        "codeformer_weight": codeformer_weight,
        "upscaling_resize": upscaling_resize,
        "upscaler_1": upscaler_1,
        "upscaler_2": upscaler_2,
        "extras_upscaler_2_visibility": extras_upscaler_2_visibility,
        "image": input_image
    }
    response = requests.post(url=f"{url}/sdapi/v1/extra-single-image", json=payload)
    images_base64 = response.json()["image"]
    image_pil = base64_to_pil(images_base64)
    if save_images == "Yes":
        save_image(image_pil, "Extras", "image")
    return image_pil

def extras_blocks():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="pil")
                with gr.Row():
                    upscaler_1 = gr.Dropdown(upscalers, label="Upscaler 1", value="R-ESRGAN 4x+")
                    upscaler_2 = gr.Dropdown(upscalers, label="Upscaler 2", value="None")
                with gr.Row():
                    upscaling_resize = gr.Slider(minimum=1, maximum=8, step=0.05, label="Scale by", value=4)
                    extras_upscaler_2_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="Upscaler 2 visibility", value=0)
                enable_gfpgan = gr.Checkbox(label="Enable GFPGAN")
                gfpgan_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="GFPGAN Visibility", value=1)
                enable_codeformer = gr.Checkbox(label="Enable CodeFormer")
                codeformer_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="CodeFormer Visibility", value=1)
                codeformer_weight = gr.Slider(minimum=0, maximum=1, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0)
            with gr.Column():
                with gr.Row():
                    btn = gr.Button("Generate | 生成", elem_id="button")
                    btn2 = gr.Button("Interrupt | 终止")
                extra_image = gr.Image(label="Extras image")
            btn.click(fn=extras, inputs=[input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight], outputs=extra_image)
            btn2.click(fn=post_interrupt, inputs=None, outputs=None)
    return demo

def get_png_info(image_pil):
    image_info=[]
    if image_pil is None:
        return None
    for key, value in image_pil.info.items():
        image_info.append(value)
    if not image_info == []:
        image_info = image_info[0]
        image_info = re.sub(r"<", "\<", image_info)
        image_info = re.sub(r">", "\>", image_info)
        image_info = re.sub(r"\n", "<br>", image_info)
    else:
        image_info = "None"
    return image_info

def png_info_blocks():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(value=None, type="pil")
            with gr.Column():
                png_info = gr.Markdown()
            input_image.change(fn=get_png_info, inputs=input_image, outputs=png_info)
    return demo

with gr.Blocks(css="#button {background: #FFE1C0; color: #FF453A} .block.padded:not(.gradio-accordion) {padding: 0 !important;} div.form {border-width: 0; box-shadow: none; background: white; gap: 0.5em;}") as demo:
    with gr.Tab("txt2img"): gen_blocks("txt2img")
    with gr.Tab("img2img"): gen_blocks("img2img")
    with gr.Tab("Extras"): extras_blocks()
    with gr.Tab("PNG Info"): png_info_blocks()

demo.queue(concurrency_count=100).launch(inbrowser=True)

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值