PyTorch教程-2:PyTorch中反向传播的梯度追踪与计算

PyTorch 教程系列:https://blog.csdn.net/qq_38962621/category_10652223.html

PyTorch教程-2:PyTorch中反向传播的梯度追踪与计算

基本原理

torch.Tensor类具有一个属性 requires_grad 用以表示该tensor是否需要计算梯度,如果该属性设置为True的话,表示这个张量需要计算梯度,计算梯度的张量会跟踪其在后续的所有运算,当我们完成计算后需要反向传播(back propagation)计算梯度时,使用 .backward() 即可自动计算梯度。当然,对于一些我们不需要一直跟踪记录运算的tensor,也可以取消这一操作,尤其是在对模型进行验证的时候,不会对变量再做反向传播,所以自然不需要再进行追踪,从而减少运算。

追踪计算历史

一个tensor的 requires_grad 属性决定了这个tensor是否被追踪运算,对其主要的操作方式:

  • 查看/返回该属性:tensor.requires_grad
  • 定义该属性的值:在创建一个tensor时显式地声明 requires_grad 变量为True(默认为False
  • 更改该属性的值:使用 tensor.requires_grad_() 改变其值
a=torch.rand(2,2,requires_grad=True)
print(a.requires_grad)
a.requires_grad_(False)
print(a.requires_grad)

True
False

每当对于requires_gradTrue的tensor进行一些运算时(除了用户直接赋值、创建等操作),这些操作都会保存在变量的 grad_fn 属性中,该属性返回一个操作,即是上一个作用在这个变量上的操作:

x=torch.ones
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值