PyTorch 教程系列:https://blog.csdn.net/qq_38962621/category_10652223.html
PyTorch教程-2:PyTorch中反向传播的梯度追踪与计算
基本原理
torch.Tensor
类具有一个属性 requires_grad
用以表示该tensor是否需要计算梯度,如果该属性设置为True
的话,表示这个张量需要计算梯度,计算梯度的张量会跟踪其在后续的所有运算,当我们完成计算后需要反向传播(back propagation)计算梯度时,使用 .backward()
即可自动计算梯度。当然,对于一些我们不需要一直跟踪记录运算的tensor,也可以取消这一操作,尤其是在对模型进行验证的时候,不会对变量再做反向传播,所以自然不需要再进行追踪,从而减少运算。
追踪计算历史
一个tensor的 requires_grad
属性决定了这个tensor是否被追踪运算,对其主要的操作方式:
- 查看/返回该属性:
tensor.requires_grad
- 定义该属性的值:在创建一个tensor时显式地声明
requires_grad
变量为True
(默认为False
) - 更改该属性的值:使用
tensor.requires_grad_()
改变其值
a=torch.rand(2,2,requires_grad=True)
print(a.requires_grad)
a.requires_grad_(False)
print(a.requires_grad)
True
False
每当对于requires_grad
为True
的tensor进行一些运算时(除了用户直接赋值、创建等操作),这些操作都会保存在变量的 grad_fn
属性中,该属性返回一个操作,即是上一个作用在这个变量上的操作:
x=torch.ones