超全!深度强化学习领域值得一读的论文列表

参考自:https://spinningup.openai.com/en/latest/spinningup/keypapers.html

强烈建议直接去看原文,每一篇文献都有链接

以下是深度强化学习Deep Reinforcement Learning)中值得一读的论文,实际上,这些远远不够全面,但应该能为希望在该领域上进行研究的人提供一个有用的起点。

Model-Free RL

Deep Q-Learning

[1] Playing Atari with Deep Reinforcement Learning, Mnih et al, 2013. Algorithm: DQN.
[2] Deep Recurrent Q-Learning for Partially Observable MDPs, Hausknecht and Stone, 2015. Algorithm: Deep Recurrent Q-Learning.
[3] Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, 2015. Algorithm: Dueling DQN.
[4] Deep Reinforcement Learning with Double Q-learning, Hasselt et al 2015. Algorithm: Double DQN.
[5] Prioritized Experience Replay, Schaul et al, 2015. Algorithm: Prioritized Experience Replay (PER).
[6] Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel et al, 2017. Algorithm: Rainbow DQN.

Policy Gradients

[7] Asynchronous Methods for Deep Reinforcement Learning, Mnih et al, 2016. Algorithm: A3C.
[8] Trust Region Policy Optimization, Schulman et al, 2015. Algorithm: TRPO.
[9] High-Dimensional Continuous Control Using Generalized Advantage Estimation, Schulman et al, 2015. Algorithm: GAE.
[10] Proximal Policy Optimization Algorithms, Schulman et al, 2017. Algorithm: PPO-Clip, PPO-Penalty.
[11] Emergence of Locomotion Behaviours in Rich Environments, Heess et al, 2017. Algorithm: PPO-Penalty.
[12] Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation, Wu et al, 2017. Algorithm: ACKTR.
[13] Sample Efficient Actor-Critic with Experience Replay, Wang et al, 2016. Algorithm: ACER.
[14] Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, Haarnoja et al, 2018. Algorithm: SAC.

Deterministic Policy Gradients

[15] Deterministic Policy Gradient Algorithms, Silver et al, 2014. Algorithm: DPG.
[16] Continuous Control With Deep Reinforcement Learning, Lillicrap et al, 2015. Algorithm: DDPG.
[17] Addressing Function Approximation Error in Actor-Critic Methods, Fujimoto et al, 2018. Algorithm: TD3.

Distributional RL

[18] A Distributional Perspective on Reinforcement Learning, Bellemare et al, 2017. Algorithm: C51.
[19] Distributional Reinforcement Learning with Quantile Regression, Dabney et al, 2017. Algorithm: QR-DQN.
[20] Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney et al, 2018. Algorithm: IQN.
[21] Dopamine: A Research Framework for Deep Reinforcement Learning, Anonymous, 2018. Contribution: Introduces Dopamine, a code repository containing implementations of DQN, C51, IQN, and Rainbow. Code link.

Policy Gradients with Action-Dependent Baselines

[22] Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic, Gu et al, 2016. Algorithm: Q-Prop.
[23] Action-depedent Control Variates for Policy Optimization via Stein’s Identity, Liu et al, 2017. Algorithm: Stein Control Variates.
[24] The Mirage of Action-Dependent Baselines in Reinforcement Learning, Tucker et al, 2018. Contribution: interestingly, critiques and reevaluates claims from earlier papers (including Q-Prop and stein control variates) and finds important methodological errors in them.

Path-Consistency Learning

[25] Bridging the Gap Between Value and Policy Based Reinforcement Learning, Nachum et al, 2017. Algorithm: PCL.
[26] Trust-PCL: An Off-Policy Trust Region Method for Continuous Control, Nachum et al, 2017. Algorithm: Trust-PCL.

Other Directions for Combining Policy-Learning and Q-Learning

[27] Combining Policy Gradient and Q-learning, O’Donoghue et al, 2016. Algorithm: PGQL.
[28] The Reactor: A Fast and Sample-Efficient Actor-Critic Agent for Reinforcement Learning, Gruslys et al, 2017. Algorithm: Reactor.
[29] Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning, Gu et al, 2017. Algorithm: IPG.
[30] Equivalence Between Policy Gradients and Soft Q-Learning, Schulman et al, 2017. Contribution: Reveals a theoretical link between these two families of RL algorithms.

Evolutionary Algorithms

[31] Evolution Strategies as a Scalable Alternative to Reinforcement Learning, Salimans et al, 2017. Algorithm: ES.

Exploration

Intrinsic Motivation

[32] VIME: Variational Information Maximizing Exploration, Houthooft et al, 2016. Algorithm: VIME.
[33] Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al, 2016. Algorithm: CTS-based Pseudocounts.
[34] Count-Based Exploration with Neural Density Models, Ostrovski et al, 2017. Algorithm: PixelCNN-based Pseudocounts.
[35] #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al, 2016. Algorithm: Hash-based Counts.
[36] EX2: Exploration with Exemplar Models for Deep Reinforcement Learning, Fu et al, 2017. Algorithm: EX2.
[37] Curiosity-driven Exploration by Self-supervised Prediction, Pathak et al, 2017. Algorithm: Intrinsic Curiosity Module (ICM).
[38] Large-Scale Study of Curiosity-Driven Learning, Burda et al, 2018. Contribution: Systematic analysis of how surprisal-based intrinsic motivation performs in a wide variety of environments.
[39] Exploration by Random Network Distillation, Burda et al, 2018. Algorithm: RND.

Unsupervised RL

[40] Variational Intrinsic Control, Gregor et al, 2016. Algorithm: VIC.
[41] Diversity is All You Need: Learning Skills without a Reward Function, Eysenbach et al, 2018. Algorithm: DIAYN.
[42] Variational Option Discovery Algorithms, Achiam et al, 2018. Algorithm: VALOR.

Transfer and Multitask RL

[43] Progressive Neural Networks, Rusu et al, 2016. Algorithm: Progressive Networks.
[44] Universal Value Function Approximators, Schaul et al, 2015. Algorithm: UVFA.
[45] Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et al, 2016. Algorithm: UNREAL.
[46] The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simultaneously, Cabi et al, 2017. Algorithm: IU Agent.
[47] PathNet: Evolution Channels Gradient Descent in Super Neural Networks, Fernando et al, 2017. Algorithm: PathNet.
[48] Mutual Alignment Transfer Learning, Wulfmeier et al, 2017. Algorithm: MATL.
[49] Learning an Embedding Space for Transferable Robot Skills, Hausman et al, 2018.
[50] Hindsight Experience Replay, Andrychowicz et al, 2017. Algorithm: Hindsight Experience Replay (HER).

Hierarchy

[51] Strategic Attentive Writer for Learning Macro-Actions, Vezhnevets et al, 2016. Algorithm: STRAW.
[52] FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et al, 2017. Algorithm: Feudal Networks
[53] Data-Efficient Hierarchical Reinforcement Learning, Nachum et al, 2018. Algorithm: HIRO.

Memory

[54] Model-Free Episodic Control, Blundell et al, 2016. Algorithm: MFEC.
[55] Neural Episodic Control, Pritzel et al, 2017. Algorithm: NEC.
[56] Neural Map: Structured Memory for Deep Reinforcement Learning, Parisotto and Salakhutdinov, 2017. Algorithm: Neural Map.
[57] Unsupervised Predictive Memory in a Goal-Directed Agent, Wayne et al, 2018. Algorithm: MERLIN.
[58] Relational Recurrent Neural Networks, Santoro et al, 2018. Algorithm: RMC.

Model-Based RL

Model is Learned

[59] Imagination-Augmented Agents for Deep Reinforcement Learning, Weber et al, 2017. Algorithm: I2A.
[60] Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning, Nagabandi et al, 2017. Algorithm: MBMF.
[61] Model-Based Value Expansion for Efficient Model-Free Reinforcement Learning, Feinberg et al, 2018. Algorithm: MVE.
[62] Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion, Buckman et al, 2018. Algorithm: STEVE.
[63] Model-Ensemble Trust-Region Policy Optimization, Kurutach et al, 2018. Algorithm: ME-TRPO.
[64] Model-Based Reinforcement Learning via Meta-Policy Optimization, Clavera et al, 2018. Algorithm: MB-MPO.
[65] Recurrent World Models Facilitate Policy Evolution, Ha and Schmidhuber, 2018.
b. Model is Given
[66] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, Silver et al, 2017. Algorithm: AlphaZero.
[67] Thinking Fast and Slow with Deep Learning and Tree Search, Anthony et al, 2017. Algorithm: ExIt.

Scaling RL

[72] Accelerated Methods for Deep Reinforcement Learning, Stooke and Abbeel, 2018. Contribution: Systematic analysis of parallelization in deep RL across algorithms.
[73] IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures, Espeholt et al, 2018. Algorithm: IMPALA.
[74] Distributed Prioritized Experience Replay, Horgan et al, 2018. Algorithm: Ape-X.
[75] Recurrent Experience Replay in Distributed Reinforcement Learning, Anonymous, 2018. Algorithm: R2D2.
[76] RLlib: Abstractions for Distributed Reinforcement Learning, Liang et al, 2017. Contribution: A scalable library of RL algorithm implementations. Documentation link.

RL in the Real World

[77] Benchmarking Reinforcement Learning Algorithms on Real-World Robots, Mahmood et al, 2018.
[78] Learning Dexterous In-Hand Manipulation, OpenAI, 2018.
[79] QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation, Kalashnikov et al, 2018. Algorithm: QT-Opt.
[80] Horizon: Facebook’s Open Source Applied Reinforcement Learning Platform, Gauci et al, 2018.

Safety

[81] Concrete Problems in AI Safety, Amodei et al, 2016. Contribution: establishes a taxonomy of safety problems, serving as an important jumping-off point for future research. We need to solve these!
[82] Deep Reinforcement Learning From Human Preferences, Christiano et al, 2017. Algorithm: LFP.
[83] Constrained Policy Optimization, Achiam et al, 2017. Algorithm: CPO.
[84] Safe Exploration in Continuous Action Spaces, Dalal et al, 2018. Algorithm: DDPG+Safety Layer.
[85] Trial without Error: Towards Safe Reinforcement Learning via Human Intervention, Saunders et al, 2017. Algorithm: HIRL.
[86] Leave No Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning, Eysenbach et al, 2017. Algorithm: Leave No Trace.

Imitation Learning and Inverse Reinforcement Learning

[87] Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy, Ziebart 2010. Contributions: Crisp formulation of maximum entropy IRL.
[88] Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, Finn et al, 2016. Algorithm: GCL.
[89] Generative Adversarial Imitation Learning, Ho and Ermon, 2016. Algorithm: GAIL.
[90] DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, Peng et al, 2018. Algorithm: DeepMimic.
[91] Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow, Peng et al, 2018. Algorithm: VAIL.
[92] One-Shot High-Fidelity Imitation: Training Large-Scale Deep Nets with RL, Le Paine et al, 2018. Algorithm: MetaMimic.

Bonus: Classic Papers in RL Theory or Review

[100] Policy Gradient Methods for Reinforcement Learning with Function Approximation, Sutton et al, 2000. Contributions: Established policy gradient theorem and showed convergence of policy gradient algorithm for arbitrary policy classes.
[101] An Analysis of Temporal-Difference Learning with Function Approximation, Tsitsiklis and Van Roy, 1997. Contributions: Variety of convergence results and counter-examples for value-learning methods in RL.
[102] Reinforcement Learning of Motor Skills with Policy Gradients, Peters and Schaal, 2008. Contributions: Thorough review of policy gradient methods at the time, many of which are still serviceable descriptions of deep RL methods.
[103] Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford, 2002. Contributions: Early roots for monotonic improvement theory, later leading to theoretical justification for TRPO and other algorithms.
[104] A Natural Policy Gradient, Kakade, 2002. Contributions: Brought natural gradients into RL, later leading to TRPO, ACKTR, and several other methods in deep RL.
[105] Algorithms for Reinforcement Learning, Szepesvari, 2009. Contributions: Unbeatable reference on RL before deep RL, containing foundations and theoretical background.

  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值