[TRPO] Trust Region Policy Optimization

TRPO是一种用于强化学习的算法,保证策略的单调改进。它通过近似策略梯度并限制策略更新的幅度(用KL散度衡量),确保在连续状态和动作空间中的稳定学习。算法涉及多项近似,包括用旧策略近似新策略的状态分布,以及用KL散度约束策略更新的步长。TRPO适用于高维输入和神经网络函数逼近,并在实际应用中使用重要性采样进行优化。
摘要由CSDN通过智能技术生成

论文链接:http://proceedings.mlr.press/v37/schulman15
引用:Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//International conference on machine learning. PMLR, 2015: 1889-1897.

概述

Trust Region Policy Optimization (TRPO) 算法是一个 model-free、policy-based、on-policy、Mento Carlo 的算法,且支持连续的状态空间和连续的动作空间,也支持高维输入、神经网络作为函数approximator。

主要的特点

  • 最小化某个替代的损失函数以保证策略能够被单调地改进
  • 在理论上合理地对算法进行一系列近似

主要的近似过程

  • 首先,对于policy gradient或者policy-based的更新算法,最重要的系数之一是步长 α {\alpha} α,如果它非常小,则我们无法有效地更新策略;或者如果它非常大,那么学习可能会变得非常不稳定,甚至越来越差。

  • 然后文章介绍了 Kakade & Langford (2002) 的一个公式:

    η ( π ~ ) = η ( π ) + E ( s 0 , a 0 , s 1 , a 1 … ) [ ∑ t = 0 ∞ γ t A π ( s t , a t ) ] = η ( π ) + ∑ s ρ π ~ ( s ) ∑ a π ~ ( a │ s ) A π ( s , a ) {\eta}(\tilde{\pi})={\eta}({\pi})+E_(s_0,a_0,s_1,a_1…)[\sum_{t=0}^{\infty}{{\gamma}^t A_{\pi} (s_t,a_t)}]={\eta}({\pi})+\sum_s{{\rho}_{\tilde{\pi}}(s) \sum_a{\tilde{\pi} (a│s) A_{\pi}(s,a)}} η(π~)=η(π)+E(s0,a0,s1,a1)[t=0γtAπ(st,at)]=η(π)+sρπ~(s)aπ~(as)Aπ(s,a)

    这个式子着我们可以给原始的成本函数(cost function)后添加一个附加项, 如果这个项 ∑ s ρ π ~ ( s ) ∑ a π ~ ( a │ s ) A π ( s , a ) \sum_s{{\rho}_{\tilde{\pi}}(s) \sum_a{\tilde{\pi} (a│s) A_{\pi}(s,a)}} sρπ~(s)aπ~(as)Aπ(s,a) 是一个负值,则这一步可以保证降低成本函数 η {\eta} η

  • 然后将等式的右侧定义为 L π ( π ~ ) L_{\pi} (\tilde{\pi}) Lπ(π~), 这就是优化的主要目标。

  • 然后第一个近似值来了:由于新策略下 π ~ \tilde{\pi} π~的状态分布很难得到,因此将新策略近似地替换为旧策略,即忽略策略变化导致的每个状态访问次数的密度的变化:

    L π ( π ~ ) = η ( π ) + ∑ s ρ π ( s ) ∑ a π ~ ( a │ s ) A π ( s , a ) L_{\pi} (\tilde{\pi})={\eta}({\pi})+\sum_s{{\rho}_{\pi} (s) \sum_a{\tilde {\pi} (a│s) A_{\pi} (s,a)}} Lπ(π~)=η(π)+sρπ(s)aπ~(as)Aπ(s,a)

    请注意,现在,我们对状态访问分布使用了旧的策略 π {\pi} π

  • 另有一个已经证明的理论说明了:只要如下的这个更新 L π θ o l d L_{{\pi}_{{\theta}_{old}}} Lπθold的步骤足够小: π θ 0 → π {\pi}_{{\theta}_0} \rightarrow {\pi} πθ0π,那他就也能够提升 η {\eta} η 本身(具体过程可看原文)

  • 然后基于保守策略迭代conservative policy iteration)理论:
    π n e w ( a │ s ) = ( 1 − α ) π o l d ( a │ s ) + α π ′ ( a ∣ s ) {\pi}_{new}(a│s)=(1−{\alpha}){\pi}_{old} (a│s)+{\alpha}{\pi}^′(a|s) πnew(as)=(1α)πold(as)+απ(as)

    以及 Kakade 和 Langford 已经证明了的如下结果:

    η ( π n e w ) ≤ L π o l d ( π n e w ) + 2 ϵ γ ( 1 − γ ( 1 − α ) ) ( 1 − γ ) α 2 {\eta}({\pi}_{new}) \leq L_{{\pi}_{old}} ({\pi}_{new})+\frac{2\epsilon{\gamma}}{(1−{\gamma}(1−{\alpha}))(1−{\gamma})}{\alpha}^2 η(πnew)Lπold(πnew)+(1γ(1α))(1γ)2ϵγα2

    引出了第二个近似值:假设这里的步长满足 α ≪ 1 \alpha \ll 1 α1,那么就可以将上述不等式近似为:

    η ( π n e w ) ≤ L ( π o l d ) ( π n e w ) + 2 ϵ γ ( 1 − γ ) 2 α 2 {\eta}({\pi}_{new} )≤L_({\pi}_{old} ) ({\pi}_{new} )+\frac{2{\epsilon}{\gamma}}{(1−{\gamma})^2} {\alpha}^2 η(πnew)L(πold)(πnew)+(1γ)22ϵγα2

  • 目前为止,步长 α \alpha α 是最重要的一个系数,本文也主要是针对此进行的研究,那么第三个近似值来了:用 π \pi π π ~ \tilde{\pi} π~ 之间的距离度量来代替 α \alpha α,这里的距离衡量的量被定为总方差散度total variance divergence

    α = D T E m a x ( π o l d , π n e w ) {\alpha}=D_{TE}^{max}({\pi}_{old},{\pi}_{new}) α=DTEmax(πold,πnew)
    ϵ = m a x s ⁡ ∣ E ( a ∽ π ′ ( a │ s ) ) [ A π ( s , a ) ] ∣ {\epsilon}=max_s⁡|E_(a{\backsim}{\pi}^′(a│s) )[A_{\pi} (s,a)]| ϵ=maxsE(aπ(as))[Aπ(s,a)]

  • 然后第四个近似值来了:根据KL散度和总方差散度之间存在的不等关系,用KL散度替换总方差散度:

    α = D K L m a x ( π o l d , π n e w ) {\alpha}=D_{KL}^{max}({\pi}_{old},{\pi}_{new}) α=DKLmax(πold,πnew)

  • 现在问题的主要目标就变为了:

    m i n θ [ L θ o l d ( θ ) + C D K L m a x ( θ o l d , θ ) ] min_{\theta} [L_{{\theta}_{old}} ({\theta})+CD_{KL}^{max}({\theta}_{old},{\theta})] minθ[Lθold(θ)+CDKLmax(θold,θ)]

  • 接下来,第五个近似值来了:把上面公式的右边部分改成一个硬值约束:

    m i n θ [ L θ o l d ( θ ) ] min_{\theta} [L_{{\theta}_{old}}({\theta})] minθ[Lθold(θ)]
    s . t . D K L m a x ( θ o l d , θ ) ≤ δ s.t. D_{KL}^{max}({\theta}_{old},{\theta})≤{\delta} s.t.DKLmax(θold,θ)δ

  • 最后,因为 m a x max max算子使优化变得很困难,所以第六个近似值来了:使用平均的KL散度而不是最大值进行计算:

    m i n θ [ L θ o l d ( θ ) ] min_{\theta} [L_{{\theta}_{old}}({\theta})] minθ[Lθold(θ)]
    s . t . D ˉ K L ρ θ o l d ( θ o l d , θ ) ≤ δ s.t. \bar{D}_{KL}^{{\rho}_{{\theta}_{old}}} ({\theta}_{old},{\theta})≤{\delta} s.t.DˉKLρθold(θold,θ)δ

  • 现在已经有了理论公式,但在实践中,需要对其进行进一步的近似,因此他们使用了重要性采样最后(第七个)的近似值变为:

    m i n θ ⁡ E s ∽ ρ θ o l d , a ∽ q [ π θ ( a │ s ) q ( a │ s ) Q θ o l d ( s , a ) ] min_{\theta}⁡{E_{s{\backsim}{\rho}_{{\theta}_{old}},a{\backsim}q} [\frac{{\pi}_{\theta} (a│s)}{q(a│s)} Q_{{\theta}_{old}}(s,a)]} minθEsρθold,aq[q(as)πθ(as)Qθold(s,a)]
    s . t . E s ∽ ρ θ o l d [ D K L ( π θ o l d ( ⋅ │ s ) ∣ ∣ π θ ( ⋅ ∣ s ) ) ] ≤ δ s.t. E_{s{\backsim}{\rho}_{{\theta}_{old}}}[D_{KL} ({\pi}_{{\theta}_{old}} (\cdot│s)||{\pi}_{\theta} (\cdot|s))] \leq{\delta} s.t.Esρθold[DKL(πθold(s)πθ(s))]δ

两种算法实现方式

  • Single Path:从 s 0 s_0 s0的分布中采样若干个 s 0 s_0 s0,然后对每一个 s 0 s_0 s0起始进行simulate,往下进行 N N N步,从而可以计算 Q Q Q
  • Vine:从 s 0 s_0 s0开始往后进行多个state,然后从这些state开始,每个state根据动作的分布rollout若干个的动作(分支)

具体的例子如下图所示:

single path and vine approach

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: (TRPO)? Trust Region Policy Optimization (TRPO) 是一种用于强化学习的算法,它通过限制策略更新的步长,以确保每次更新都不会使策略变得太差。TRPO 是一种基于梯度的方法,它通过最大化期望收益来优化策略。TRPO 的主要优点是它可以保证每次更新都会使策略变得更好,而不会使其变得更差。 ### 回答2: Trust Region Policy OptimizationTRPO)是一种用于优化强化学习策略的算法。TRPO通过在每次更新策略时限制更新量,来解决策略优化中的非线性优化问题。其目标是在保证策略改进的同时,尽量减小策略更新带来的影响。 TRPO的核心思想是在每次迭代中保持一个信任区域,该区域内的策略改进之后的表现要比当前策略好。通过限制策略更新的KL散度(Kullback-Leibler Divergence),TRPO保证了平稳的、逐步改进的过程。 TRPO的算法步骤如下:首先,通过采样数据来估计策略的梯度;其次,通过求解一个约束优化问题来计算策略更新的方向和大小;最后,采用线搜索来确定在保证改进的前提下,策略更新的步长。 TRPO相对于其他的策略优化算法有几个优点。首先,TRPO可以高效地利用采样数据,避免了需求大量样本的问题。其次,通过控制策略更新的幅度,TRPO可以保持算法的稳定性和鲁棒性。最后,TRPO可以应用于各种不同类型的强化学习任务,并取得不错的性能。 总之,Trust Region Policy Optimization 是一种通过限制策略更新的KL散度来优化强化学习策略的算法。其核心思想是在每次迭代中维持一个信任区域,通过约束优化问题来计算策略更新,并使用线搜索来确定更新步长。TRPO具有高效利用采样数据,保持稳定性和适应性强的优点,能够在不同任务中取得良好性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值