多条件贝叶斯公式,贝叶斯纳什均衡

834 篇文章 ¥199.90 ¥299.90
本文介绍了贝叶斯公式及其在多条件情况下的应用,探讨了贝叶斯纳什均衡与精炼贝叶斯均衡的区别,解释了完全信息和不完全信息的概念,并通过支付矩阵设计展示了纳什均衡的证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

贝叶斯

多条件贝叶斯公式

贝叶斯纳什均衡和精炼贝叶斯均衡有什么区别  

完全信息和不完全信息

纳什均衡证明


贝叶斯

就是由结果推断原因A导致的概率,就是个逆过程

多条件贝叶斯公式

对于变量有二个以上的情况,贝式定理亦成立。P(A|B,C)=P(B|A)*P(A)*M / ( P(B)*P(C|B) ).则M=()。
我将通过求出M的方式来告诉大家多变量条件概率公式如何推导。
首先大家都知道一个耳熟能详的条件概率公式P(A|B)=P(A,B)/P(B),那么我们可以将B,C同时发生记为事件T,所以P(A|T)=P(A,T)/P(T)。则有:P(A|B,C)=P(A,B,C)/P(B,C)
1、
P(A,B,C)=P(C,A,B)=P(C|A,B)*P(A,B)=P(C|A,B)*P(B,A)=P(C|A,B)*P(B|A)*P(A)
2、
P(B,C)=P(C|B)*P(B)
综上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值