低资源集群中的大语言模型分布式推理技术:Reduce、LayerNorm和Broadcast的作用

671 篇文章 ¥199.90 ¥299.90

目录

论文解析:低资源集群中的大语言模型分布式推理技术

核心内容:

核心创新点原理与理论举例说明:

All-Reduce+LayerNorm算子:

Reduce、LayerNorm和Broadcast的作用

Reduce

LayerNorm

Broadcast

All-Reduce

一、简单理解

二、举例说明原理

三、通信树的优势


论文解析:低资源集群中的大语言模型分布式推理技术

核心内容

核心内容是探索了一种并行能力更强、具有更好兼容性的大语言模型(LLM)分布式推理范式,该范式专为弱算力、小显存环境设计。

针对这些环境面临的技术挑战,提出了基于通信树的高效All-Reduce组通信技术、细粒度的显存管理与调度技术等关键技术。

并基于这些技术,构建了一套针对资源受限场景的LLM推理软件系统,旨在用数量有限的低资源设备,最大化能推理的LLM,同时通过优化通信策略与计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值