有哪些评价LLM LoRA后的公开数据和测评方法

有哪些评价LLM LoRA后的公开数据和测评方法

公开数据

  • 与基础任务相关的数据集:如NaturalQuestionsSquad等在评价LLM LoRA后仍可使用。在经过LoRA微调后,模型在这些数据集上的表现可以反映出其在基础的问答、阅读理解等任务上的性能提升情况。例如,如果一个经过LoRA微调的模型在NaturalQuestions数据集上的回答准确率提高了,说明LoRA在提升模型基础问答能力方面有积极作用。
  • 与新兴能力相关的数据集:像GSM8KTruthfulQA等数据集对于评估LLM LoRA后的新兴能力很关键。以GSM8K为例,如果LoRA微调后的模型在解决小学数学题的准确率和推理步骤的完整性上有所提高,表明LoRA有助于增强模型的数学推理能力;而在TruthfulQA上的表现,能反映出模型生成真实答案的能力是否因LoRA微调而提升。
  • 与增强型能力相关的数据集HotpotQAToolQA等可用于考察LLM LoRA后的增强型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值