有哪些评价LLM LoRA后的公开数据和测评方法
公开数据
- 与基础任务相关的数据集:如NaturalQuestions、Squad等在评价LLM LoRA后仍可使用。在经过LoRA微调后,模型在这些数据集上的表现可以反映出其在基础的问答、阅读理解等任务上的性能提升情况。例如,如果一个经过LoRA微调的模型在NaturalQuestions数据集上的回答准确率提高了,说明LoRA在提升模型基础问答能力方面有积极作用。
- 与新兴能力相关的数据集:像GSM8K、TruthfulQA等数据集对于评估LLM LoRA后的新兴能力很关键。以GSM8K为例,如果LoRA微调后的模型在解决小学数学题的准确率和推理步骤的完整性上有所提高,表明LoRA有助于增强模型的数学推理能力;而在TruthfulQA上的表现,能反映出模型生成真实答案的能力是否因LoRA微调而提升。
- 与增强型能力相关的数据集:HotpotQA、ToolQA等可用于考察LLM LoRA后的增强型