分母有理化

当分母中存在无理根式时,通过给分式上下乘以另外一个无理根式使根号可以去掉成为有理式的方法称为分母有理化。

### 回答1: 可以使用以下公式将二次制造数转化为分数: 分子 = 二次制造数 - 整数部分 分母 = (10的小数位数次方 - 1) * 10的小数位数次方 例如,对于二次制造数 3.476,它的整数部分为 3,小数部分为 0.476,小数位数为 3。因此,它可以转化为分数: 分子 = 0.476 分母 = (10的3次方 - 1) * 10的3次方 = 999000 所以,3.476可以表示为 3476/9990 的分数形式。 ### 回答2: 将一个二次根式转化为分数的方法是通过有理化,即将其分母理化为一个整数。 假设有一个二次根式√(a/b),其中a和b是任意正整数。我们的目标是将其转化为一个分数,即一个整数除以另一个整数的形式。 首先,我们需要将根号内的分子和分母进行约分。寻找一个公因数c,使得分子a和分母b都可以被c整除。将a和b分别除以c,得到约分后的新分子a'和新分母b'。 然后,我们将根号内的分母b'进行平方,即将根号内的b'提取出来,得到√(b')。这样,我们得到了一个分数形式的二次根式:√(a')/√(b')。 接下来,我们需要将分母理化。有理化的方法是将分子和分母同时乘以√(b'),即将分母中的根号消去。这样,我们得到了一个最终的分数形式:(√(a')*√(b'))/b'。 最后,我们可以将分子 (√(a')*√(b')) 展开,并对分子与分母进行约分。如果有可能约分,则进行约分;如果不能约分,则保持分子分母原样。 综上所述,我们通过有理化的方法将二次根式转化为分数的步骤如下: 1.约分,找到一个公因数c,使得分子和分母都可以被c整除,得到新的分子a'和新的分母b'; 2.将分母b'进行平方,得到√(b'); 3.将分母理化,将分子和分母同时乘以√(b'),得到最终的分数形式:(√(a')*√(b'))/b'; 4.对分子与分母进行约分,得到最简形式的分数。 注意:这个方法只适用于分母是一个整数的情况,如果分母是二次根式或其他形式,将无法有理化。 ### 回答3: 要将二次根式转化为分数,我们需要以下步骤: 1. 确保二次根式的分子实数部分是一个完全平方数。如果不是,我们需要先化简它。 2. 将二次根式转化为分数形式。例如,如果二次根式为√25,我们知道25是一个完全平方数,因此√25等于5。所以二次根式√25可以转化为分数形式的5/1。 3. 如果二次根式是一个复杂的形式,例如√72,我们需要先将72分解质因数。72可以分解为2 * 2 * 2 * 3 * 3,其中2是一个重复的质因数。然后我们可以将√72重写为√(2 * 2 * 2 * 3 * 3)。 4. 然后我们可以将每对相同的质因数提取出来,得到√(2 * 2 * 2 * 3 * 3) = (2 * 3) * √2 = 6√2。所以原来的二次根式√72可以转化为分数形式的6√2。 通过以上步骤,我们可以将二次根式转化为分数形式。请注意,在一些情况下,二次根式可能无法完全化简为分数形式,例如√2、√3等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值