使用drem对控制系统进行参数估计simulink仿真

该文介绍了使用动态回归扩展和混合方法(DREM)进行系统参数估计的过程,并通过Simulink进行了仿真。作者提供了模型参数的设定,如theta、tau和gamma,并分享了Simulink仿真模型的链接,用于比较使用估计参数的系统与原始系统的输出。此外,还列出了相关博客资源,涉及控制系统参数估计、数字控制系统仿真和步进电机控制等话题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

估计方法

仿真


估计方法

扩展(Extension)

\begin{aligned} y(t) &=x_{1}(t) \theta_{1}+x_{2}(t) \theta_{2}, \\ y(t-\tau) &=x_{1}(t-\tau) \theta_{1}+x_{2}(t-\tau) \theta_{2}, \end{aligned}

Y(t)=\left[\begin{array}{c} y(t) \\ y(t-\tau) \end{array}\right] \quad X(t)=\left[\begin{array}{cc} x_{1}(t) & x_{2}(t) \\ x_{1}(t-\tau) & x_{2}(t-\tau) \end{array}\right]

\begin{aligned} Y(t) &=X(t) \theta \\ X^{-1}(t) Y(t) &=X^{-1}(t) X(t) \theta \\ X^{-1}(t) Y(t) &=\theta \\ \frac{\operatorname{adj} X(t)}{\operatorname{det} X(t)} Y(t) &=\theta \end{aligned}

混合(Mixing)

\begin{aligned} \operatorname{adj} X(t) Y(t) &=\operatorname{det} X(t) \theta \\ Z(t) &=\Delta \theta \end{aligned}

其中Z(t)=\left[\begin{array}{l} z_{1}(t) \\ z_{2}(t) \end{array}\right]=\operatorname{adj} X(t) Y(t), \Delta(t)=\operatorname{det} X(t)

评估策略:

\begin{aligned} \dot{\hat{\theta}}_{1} &=\gamma \Delta\left(z_{1}-\Delta \hat{\theta}_{1}\right) \\ \dot{\hat{\theta}}_{2} &=\gamma \Delta\left(z_{2}-\Delta \hat{\theta}_{2}\right) \\ \dot{\hat{\theta}} &=\gamma \Delta(Z-\Delta \hat{\theta}) \end{aligned}

仿真

待估计系统:

y=\sin (t)+2 \cos (t)

编写m代码确定模型参数

theta = [1;2];
tau=0.5*pi;
gamma = 100;



simulink仿真模型:

使用估计参数的系统与原系统输出比较

模型及m文件下载地址:drem方法对系统参数进行估计-智慧城市文档类资源-CSDN下载

参考:Parameters Estimation via Dynamic Regressor Extension and Mixing 2016 American Control Conference (ACC) Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

相关文章:

使用simulink仿真连续(离散)线性定长系统全维渐进状态观测器_Giiwedin的博客-CSDN博客

使用drem对控制系统进行参数估计simulink仿真_Giiwedin的博客-CSDN博客

对给定干扰信号的simulink数字控制系统仿真_Giiwedin的博客-CSDN博客_simulink扰动信号

二相混合式步进电机闭环矢量控制simulink仿真(含仿真文件)_Giiwedin的博客-CSDN博客_步进电机数学模型

二相混合式步进电机开环细分控制simulink建模仿真含模型文件_Giiwedin的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

фора 快跑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值