Lua pairs与ipairs效率分析

本文深入研究了Lua中pairs和ipairs在遍历table时的效率差异,指出ipairs在遇到nil即停止,而pairs通过lua_next遍历线性数组和hash空间。适合table数据结构全在array的情况两者效率相当,但遍历hash表时pairs更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介于大家目前有些人比较关心 lua table中pairs 和 ipairs的效率问题, 特此研究了一下... 如有不正 还需指出.. 

首先来看下 lua中table的结构定义:


table中分为2个存储空间, 一个是线性数组空间(TValue *array), 和一个hash空间(Node *node)

当我们使用 pairs 和 ipairs 会产生两种不同的迭代器, 一个仅仅遍历数组, 一个遍历所有的值

 

 

 




所以, 当调用ipairs的时候, 在线性数组中遇到第一个nil时便停止遍历, 不管后面还是否有值, 这点在遍历的时候要格外注意

而pairs的迭代器会调用lua_next, lua_next的实现:




这个函数会根据top信息调用luaH_next获取当前table中的下一组键值, 那么关键就在luaH_next中, 来看看这个函数的实现:



我们粗略的可以看到, 这个函数会先计算索引位置, 并根据该位置优先从线性数组中查找, 如果没有找到, 再从hash表中查找, 所以如果用pairs遍历array, 实则和ipairs等效, 并无差异.

所以, 由上面的分析, 如果我们明确table中的数据全部存放在线性数组中, 调用ipairs或者pairs均可, 并无太大差异(注意ipairs时中间不要出现nil值, 否则会导致遍历中断), 如果我们明确遍历hash表中的值, 则使用pairs, 其效率会较遍历array中的差


简单测试 遍历500 000 000个array or hash value的效率:

local array = {}
for i = 1, 500000000 do
    table.insert(array, i)
end

local startTime = os.time()
for i, v in pairs(array) do

end
print(string.format("pairs time : %d", os.time() - startTime))

startTime = os.time()
for i, v in ipairs(array) do

end
print(string.format("ipairs time : %d", os.time() - startTime))

 

由于使用了os.time() , 只能获取到秒级时间, 故精确度不算太高...

 

转载自:https://blog.csdn.net/tony7758/article/details/6334001

### 关于 GitHub 上的 Cursor MCP 或 CursorMCP 项目 在 GitHub 中搜索 **Cursor MCP** 或 **CursorMCP** 相关的项目时,可以关注以下几个方面: #### 搜索关键词 可以通过以下关键词组合来提高搜索效率: - `cursor mcp` - `mcp cursor` - `cursor-mcp` - `CursorMCP` 这些关键词可以帮助定位到可能的相关存储库。 #### 可能的功能特性 根据已知的信息[^1],**Cursor MCP** 是一种用于增强生产力的工具或框架。它通常涉及多窗口管理、自动化脚本编写以及跨平台支持等功能。因此,在查找相关项目时,可重点关注以下功能模块: - 多重剪贴板管理器实现。 - 自动化任务处理逻辑。 - 跨设备同步机制。 以下是基于上述特性的代码片段示例,展示了一个简单的多重剪贴板管理系统的核心部分: ```python import pyperclip class MultiClipboardManager: def __init__(self): self.clipboard_data = {} def save_clip(self, key, value): """保存剪贴板数据""" self.clipboard_data[key] = value print(f"Saved '{key}': {value}") def load_clip(self, key): """加载指定键的剪贴板内容并复制到系统剪贴板""" if key in self.clipboard_data: pyperclip.copy(self.clipboard_data[key]) print(f"Copied to clipboard: {self.clipboard_data[key]}") else: print(f"No entry found for key: {key}") # 使用示例 manager = MultiClipboardManager() manager.save_clip('test', 'This is a test string') # 存储测试字符串 manager.load_clip('test') # 加载并复制到剪贴板 ``` 此代码展示了如何通过 Python 实现基本的多重剪贴板功能,这可能是某些 **Cursor MCP** 类型项目的组成部分之一。 #### 如何验证找到的仓库? 当发现潜在的目标仓库后,可以从以下几个角度评估其是否符合需求: 1. 是否提供详细的文档说明?是否有安装指南和使用案例描述? 2. 是否有活跃的社区维护记录?比如最近提交的时间戳、Issues 和 Pull Requests 数量等指标。 3. License 文件是否存在及其条款是否满足个人/商业用途? 如果目标是寻找具体的技术解决方案,则还需要进一步确认该方案能否解决实际遇到的问题或者扩展业务场景所需的能力范围。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值