PrivGraph:利用社区信息发布差分隐私图数据

PrivGraph: Differentially Private Graph Data Publication by Exploiting Community Information

[1]Yuan Q, Zhang Z, Du L, et al. PrivGraph: Differentially Private Graph Data Publication by Exploiting Community Information[J]. arXiv preprint arXiv:2304.02401, 2023.

一、摘要

图数据的应用范围很广,在不加保护的情况下分析图数据容易存在隐私泄露风险。为了减轻隐私风险,我们采用差分隐私的标准技术来发布合成图。然而,现有的差分私有图合成方法要么通过直接扰动邻接矩阵引入过多噪声,要么在图编码过程中遭受大量信息损失。在本文中,我们通过利用社区信息提出了一种有效的图合成算法 PrivGraph。具体来说,PrivGraph 将私有图差分私密地划分为社区,提取社区内和社区间信息,并从提取的图信息中重建图。我们验证了 PrivGraph 在六个真实世界的图形数据集和七个常用图形指标上的有效性。

1、问题:

1、直接扰动,噪声过量
2、图编码损失大量信息

2、方法:

PrivGraph 将私有图差分私密地划分为社区,提取社区内和社区间信息,并从提取的图信息中重建图
现有方法要么通过直接扰动邻接矩阵引入过多噪声,要么在对图数据进行编码的过程中遭受大量信息损失。在本文中,我们提出了 PrivGraph,它利用图数据的社区信息来在扰动噪声和信息丢失之间进行权衡。
为了避免直接向邻接矩阵的每个单元格添加噪声引起的大扰动,PrivGraph利用社区划分机制将所有节点分组为多个社区,并向社区而不是节点添加噪声。然而,现有的社区发现算法并不满足DP。
因此,我们设计了 DP 保证下的两步划分机制,即社区初始化和社区调整。 PrivGraph 在社区初始化中生成一个初始社区分区,并在社区调整中进一步调整节点划分。社区聚合了比每个节点更多的信息,从而对噪声扰动具有更高的鲁棒性。
基于社区内边缘更密集,社区间边缘更稀疏的直觉,我们设计了两种机制分别提取、扰动和重建社区内和社区间的边缘,同时保留结构信息和抑制噪声.此外,我们提出了一个后处理程序来保持数据保真度。

3、贡献:

• 我们深入研究了差分私有图合成的现有解决方案,并确定了它们的主要缺点。

• 我们提出了一种实用的PrivGraph 方法来生成DP 下的合成图。总体思路是通过社区信息对图中的节点进行分组,避免引入过多的噪声,并根据社区内和社区间的特点采用不同的重构方法来保留图结构。

• 我们对多个数据集和指标进行了广泛的实验和真实案例研究,以说明 PrivGraph 的有效性。

二、问题定义和现有解决方案

1、威胁模型

通过完全访问已发布的图,对手的目标是推断原始图中是否存在边。例如,给定一个合成电子邮件通信网络,对手的目标是确定任意两个用户之间是否存在电子邮件连接。在本文中,我们考虑一个无向且未加权的图 G = (V,E),其中 V 是节点集,E 是边集。
我们对以下问题感兴趣:给定图 G,如何生成与原始图 G 具有相似图属性同时满足 edge-DP 的合成图 Gs。
由于 DP 的后处理特性,合成图 Gs 可用于任何下游图分析任务而不会丢失隐私。我们在表 1 中总结了常用的数学符号。
可用性:继之前的研究 [6, 45, 68],我们从五个不同方面衡量 Gs 和 G 之间的相似性:社区发现、节点信息、度分布、路径条件和拓扑结构。具体地,社区发现旨在检测社区并揭示图的结构,节点信息反映每个节点的邻居信息,度分布揭示图的整体连接密度,路径状况反映图的连通性,拓扑结构说明了节点聚合的级别。

2、方案

在这里插入图片描述

第1阶段:社区分部(CD)。
我们设计了一种社区检测算法以获得合适的节点分区。核心思想是首先通过将几个节点合并为一个超级节点来生成粗分区。然后,如图 1 上方的虚线框所示,超级节点形成一个加权图,其中包含内部权重,即社区内的边缘,以及外部权重,即社区之间的边缘。 PrivGraph 分别通过拉普拉斯噪声对这两部分进行扰动,并应用后处理来校准噪声权重(也就是社区内外边的数量)。接下来,PrivGraph 采用 Louvain [3] 方法根据校准后的权重细化社区划分。最后,PrivGraph利用指数机制调整得到最终的分区。第 1 阶段的详细信息在第 4.3 节中。
第 2 阶段:信息提取 (IE)。
如右下虚线框所示,我们根据阶段 1 的社区从原始图中提取信息。由于大多数节点倾向于在社区内拥有更多的边,而社区之间的边则更少,因此我们将每个节点的度数记录在自己的社区和社区对之间的边缘总和。 PrivGraph为满足edge-DP,在节点的度和边的总和上加入拉普拉斯噪声,然后对扰动后的结果进行后处理。第 2 阶段的详细信息参见第 4.4 节。
第 3 阶段:图形重建 (GR)。
在左下方的虚线框中,PrivGraph 根据每个节点的噪声程度重建社区内边缘。对于社区间边,PrivGraph 在边和约束下随机连接不同社区之间的节点。第 3 阶段的详细信息在第 4.5 节中。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值