恒虚警率检测(Constant False Alarm Rate Detector)
文章目录
介绍
目标检测是雷达系统的一项重要任务,本质是将输入信号和阈值作比较,判断目标是否存在。设
x
(
t
)
x(t)
x(t) 是关于时间
t
t
t 的输入信号,
n
(
t
)
n(t)
n(t) 是背景噪声,
s
(
t
)
s(t)
s(t) 是目标信号,则目标检测可以建模为一个二元假设检验问题:
H
0
:
x
(
t
)
=
n
(
t
)
H
1
:
x
(
t
)
=
s
(
t
)
+
n
(
t
)
H_0:x(t)=n(t) \\ H_1:x(t)=s(t)+n(t)
H0:x(t)=n(t)H1:x(t)=s(t)+n(t)
H
0
H_0
H0 表示输入信号中无目标信号的假设,
H
1
H_1
H1 表示输入信号中有目标信号的假设。设
D
0
D_0
D0 表示判定
H
0
H_0
H0 为真,输入信号中无目标信号,
D
1
D_1
D1 表示判定
H
1
H_1
H1 为真,输入信号中有目标信号,则每次检测可能有以下四种结果:
D 0 D_0 D0 | D 1 D_1 D1 | |
---|---|---|
H 0 H_0 H0 | 正确不发现 | 虚警 |
H 1 H_1 H1 | 漏检 | 检测 |
由于在许多雷达系统中,虚警会带来严重的资源浪费,我们希望在检测概率 P d P_\text{d} Pd 尽可能大的同时,虚警概率 P fa P_\text{fa} Pfa 能够被控制在一定水平内,所以在设计检测阈值时要综合考虑对 P d P_\text{d} Pd 和 P fa P_\text{fa} Pfa 的影响。一些经典的阈值设计算法通常基于干扰信号是功率已知的高斯白噪声这一理论假设,而实际应用中,背景噪声经常包含有色噪声,其功率也是未知的。为了解决这一问题,产生了恒虚警率检测(CFAR)算法。
恒虚警率检测算法在处理检测单元(cell under test, CUT)时,使用该单元附近的数据估计噪声功率,算法的阈值设置为:
T
=
α
P
n
T={\alpha}P_n
T=αPn
式中
P
n
P_n
Pn 是噪声功率的估计值,
α
\alpha
α 是缩放因子,也叫阈值因子。
从公式中可以发现,恒虚警率检测算法的阈值能够根据噪声功率估计值自适应待处理的数据。通过调节阈值因子 α \alpha α,算法将虚警概率 P fa P_\text{fa} Pfa 保持在指定值,因此叫做恒虚警率检测。
算法
一维恒虚警率检测器的示意图如下:

如果检测单元是存在目标信号,那么检测器输出为真;否则,检测器输出为假。检测单元两侧的守卫单元防止目标信号泄漏到训练单元中。守卫单元外侧的训练单元用于估计噪声功率。噪声功率估计方法不是唯一的,因此产生了各种恒虚警率检测方法。
单元均值恒虚警(Cell Average CFAR, CA-CFAR)
CA-CFAR将所有训练单元的平均值作为噪声功率估计值,工作原理如下图 [ 2 ] ^{[2]} [2]。

对于输入的平方律检波,噪声功率估计值用下式计算:
P
n
=
1
N
∑
i
=
1
N
x
i
P_n=\frac{1}{N}\sum_{i=1}^N x_i
Pn=N1i=1∑Nxi
式中,
N
N
N 是训练单元的总数,
x
m
x_m
xm 是各个训练单元的值。
假设通过检测器的数据中仅有一个目标信号,那么阈值因子可以通过下式计算
[
1
]
^{[1]}
[1]:
α
=
N
(
P
fa
−
1
/
N
−
1
)
\alpha=N(P_\text{fa}^{-1/N}-1)
α=N(Pfa−1/N−1)
如果背景噪声是非均匀噪声,CA-CFAR的虚警率会偏高。
最大单元均值恒虚警(Greatest of Cell Average CFAR, GOCA-CFAR)
GOCA-CFAR分别计算前置训练单元和后置训练单元的平均值,再取两者的最大值作为噪声功率估计值,工作原理如下图 [ 2 ] ^{[2]} [2]。GOCA-CFAR可以减少信号中的杂波引起的虚警。

最小单元均值恒虚警(Smallest of Cell Average CFAR, SOCA-CFAR)
SOCA-CFAR分别计算前置训练单元和后置训练单元的平均值,再取两者的最小值作为噪声功率估计值,工作原理如下图 [ 2 ] ^{[2]} [2]。在检测器内存在多个目标信号时,SOCA-CFAR能够降低漏检率,但是会引起较高的虚警率。

排序恒虚警(Order Statistic CFAR, OS-CFAR)
OS-CFAR先由高到低对训练单元排序,再取排序后的第 k k k 个训练单元的值作为噪声功率估计值,工作原理如下图 [ 2 ] ^{[2]} [2]。在检测器内存在多个目标信号时,OS-CFAR能够降低虚警率。 k k k 一般设置为 3 4 N \frac{3}{4}N 43N。

二维单元均值恒虚警率检测
二维的单元均值恒虚警率检测与一维类似,在二维平面上,有内到外分别是检测单元、守卫单元和训练单元,工作原理如下图 [ 2 ] ^{[2]} [2]。

训练单元数量用下式计算:
N
=
(
2
N
TC
+
2
N
GC
+
1
)
(
2
N
TR
+
2
N
GR
+
1
)
−
(
2
N
GC
+
1
)
(
2
N
GR
+
1
)
N=(2N_\text{TC}+2N_\text{GC}+1)(2N_\text{TR}+2N_\text{GR}+1)-(2N_\text{GC}+1)(2N_\text{GR}+1)
N=(2NTC+2NGC+1)(2NTR+2NGR+1)−(2NGC+1)(2NGR+1)
参考文献
[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005
[2] Rainier Heijne, Comparing Detection Algorithms for Short Range Radar: based on the use-case of the Cobotic-65, Aug 2022