3D渲染数学基础(2)向量

一、向量

1. 向量的概念

  既有大小又有方向的量称为向量(Vector),也叫矢量
  只有大小没有方向的量称为标量(Scalar)

2. 向量的表示

  通常用黑体小写字母 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 或上方带有箭头的小写字母 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a ,b ,c 来表示向量。(带箭头的形式通常用于手写)

2.1 向量的几何表示

  在几何上,通常用有向线段(带箭头的线段)来表示向量,有向线段的长度表示向量的大小有向线段的方向表示向量的方向
在这里插入图片描述
  向量也可以由两个点来表示,起点为 A A A、终点为 B B B的有向线段就可以表示一个确定的向量,记作 A B → \overrightarrow{AB} AB
在这里插入图片描述

2.2 向量的坐标表示

  为了用代数方法研究向量,我们引入了向量的坐标,把向量和有序数组联系起来,从而将向量的运算转化为数的运算。
  将向量 A B → \overrightarrow{AB} AB 对应的有向线段进行平移,使起点 A A A和坐标原点 O O O重合,此时有向线段终点 B B B 的坐标 ( a 1 , a 2 , a 3 , . . . , a n ) (a_{1}, a_{2}, a_{3}, ..., a_{n}) (a1,a2,a3,...,an) 就作为 向量的坐标,为了和坐标区分,我们用 { } \{\} {} 来表示向量, 记作 a = { a 1 , a 2 , a 3 , . . . , a n } \boldsymbol{a}=\{a_{1}, a_{2}, a_{3}, ..., a_{n}\} a={a1,a2,a3,...,an}
在这里插入图片描述

  向量只表示方向和在这个方向上的偏移量,没有位置之分。即使有些向量在图中绘制的起点不同,但只要两个向量平移后能够重合,那这两个向量就是相等的。

  在平面直角坐标系中,向量 a \boldsymbol{a} a 的坐标为 { a x , a y } \{a_{x}, a_{y}\} {ax,ay},含有两个元素,称为二维向量。在空间直角坐标系中,向量 a \boldsymbol{a} a的坐标为 { a x , a y , a z } \{a_{x}, a_{y}, a_{z}\} {ax,ay,az},含有三个元素,称为三维向量
  我们对向量进行扩展,对于以包含 n n n个元素的有序数组 { a 1 , a 2 , a 3 , . . . , a n } \{a_{1}, a_{2}, a_{3}, ..., a_{n}\} {a1,a2,a3,...,an}来表示的向量,称其为 n n n 维向量

3. 向量的模

  向量的大小 (Magnitude) 也称为向量的(Modulus)或向量的长度,记作 ∣ a ∣ \left| \boldsymbol{a} \right| a ∣ a ⃗ ∣ \left| \vec{a} \right| a ∣ A B → ∣ \left| \overrightarrow{AB} \right| AB 等。有时绝对值符号 ∣   ∣ \left| \: \right| 也用 范数(Norm) 符号 ∥   ∥ \left\| \: \right\| 代替,如 ∥ a ∥ \left\| \boldsymbol{a} \right\| a。对于向量 A B → \overrightarrow{AB} AB 来说,模 ∣ A B → ∣ \left| \overrightarrow{AB} \right| AB 就等于线段 A B AB AB的长度。

  向量的长度是一个非负数。长度为1的向量称为单位向量 (Unit vector)。长度为0的称为零向量,记为 0 \boldsymbol{0} 0 0 → \overrightarrow{0} 0

特别规定,零向量的方向是任意的

  通常用 i , j , k \boldsymbol{i, j, k} i,j,k 分别表示 坐标系 x x x轴、 y y y轴和 z z z轴正向的单位向量,并称其为基本单位向量
在这里插入图片描述

  当知道向量的坐标时,我们可以利用勾股定理来计算向量的模。

3.1 一维向量的模

  一维向量对应数轴上的一个点,只有正负两个方向。比如在一条东西走向的道路上,假设以向东行驶为正向,以向西行驶为负向,此时在道路上行驶的汽车的速度即为一维向量。
  对于一维向量 ∣ O A → ∣ \left| \overrightarrow{OA} \right| OA O O O 为坐标轴原点,向量的模就等于 A A A 点到原点的距离,即绝对值

  若一维向量在数轴上对应点的值为 a a a, 那么向量的模等于 ∣ a ∣ \left | a \right | a

在这里插入图片描述

3.2 二维向量的模

  对于二维向量 { a x , a y } \{a_{x}, a_{y}\} {ax,ay},由勾股定理可得向量的模为 a x 2 + a y 2 \sqrt{{a_x}^2+{a_y}^2} ax2+ay2
在这里插入图片描述

3.3 三维向量的模

  对于三维向量,如下图所示,三维向量 ∣ O B → ∣ \left| \overrightarrow{OB} \right| OB 的坐标表示为 { a x , a y , a z } \{a_{x}, a_{y}, a_{z}\} {ax,ay,az} B B B点在空间直角坐标系中的坐标为 ( a x , a y , a z ) (a_{x}, a_{y}, a_{z}) (ax,ay,az) A A A点为 B B B点在 x O y xOy xOy平面上的投影,则可以得到 A A A点坐标为 ( a x , a y , 0 ) (a_{x}, a_{y}, 0) (ax,ay,0),由勾股定理得: O B 2 = O A 2 + A B 2 OB^{2}=OA^{2} + AB^{2} OB2=OA2+AB2
在这里插入图片描述
  在平面直角坐标系中,我们已经得到线段 O A OA OA的长度等于 ∣ O A → ∣ = a x 2 + a y 2 \left| \overrightarrow{OA} \right|=\sqrt{{a_x}^2+{a_y}^2} OA =ax2+ay2 ,两边同时平方得 O A 2 = a x 2 + a y 2 OA^{2}={a_x}^2+{a_y}^2 OA2=ax2+ay2 。而又有 A B = a z AB = a_{z} AB=az,所以 ∣ O B → ∣ = O B = O B 2 = O A 2 + A B 2 = a x 2 + a y 2 + a z 2 \left| \overrightarrow{OB} \right| =OB =\sqrt{OB^{2}}=\sqrt{OA^{2} + AB^{2}}=\sqrt{{a_x}^2+{a_y}^2+{a_z}^2} OB =OB=OB2 =OA2+AB2 =ax2+ay2+az2
    所以三维向量 { a x , a y , a z } \{a_{x}, a_{y}, a_{z}\} {ax,ay,az}的模为 a x 2 + a y 2 + a z 2 \sqrt{{a_x}^2+{a_y}^2+{a_z}^2} ax2+ay2+az2

3.4 n 维向量的模

  由一维向量,二维向量以及三维向量的模长公式,可以推断出, n n n维向量 a = { a 1 , a 2 , a 3 , . . . , a n } \boldsymbol{a} = \{a_{1}, a_{2}, a_{3}, ..., a_{n}\} a={a1,a2,a3,...,an} 的模长计算公式为: ∣ a ∣ = a 1 2 + a 2 2 + a 3 2 + . . . + a n 2 \left| \boldsymbol{a} \right| = \sqrt{{a_1}^2+{a_2}^2+{a_3}^2 + ...+{a_n}^2} a=a12+a22+a32+...+an2

4. 向量相等

4.1 向量相等

  如果向量 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b 的模相等且方向相同,就称向量 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b 相等,记作 a = b \boldsymbol{a} = \boldsymbol{b} a=b
在这里插入图片描述

  依此定义,相等的向量与其起点位置无关,如果一个向量能够在空间中通过平移变换而与另一个向量重合,那么这两个向量就是相等的。
  我们把在空间中作任何平移变换都保持不变的向量称为自由向量。如果没有特别说明,一般所说的向量都是指自由向量。

4.2 相反向量

  如果将两个向量平移至起点重合后,两个向量在同一条直线上,方向相反并且大小相等,那么这两个向量互为相反向量

  大小相等,方向相反的向量互为相反向量,也称为负向量。向量 a \boldsymbol{a} a 的相反向量记作 − a -\boldsymbol{a} a 。向量 A B → \overrightarrow{AB} AB 的相反向量是 B A → \overrightarrow{BA} BA

零向量的相反向量依然是零向量。

在这里插入图片描述

5. 向量之间的夹角

  对于向量 a \boldsymbol{a} a 和向量 b \boldsymbol{b} b ,将两个向量平移至起始点重合,称它们所在射线的夹角 θ \theta θ a \boldsymbol{a} a b \boldsymbol{b} b 的夹角,记作 ( a , b ^ ) \left( \widehat{a,b} \right) (a,b ), 即有 θ = ( a , b ^ ) \theta =\left( \widehat{a,b} \right) θ=(a,b )向量夹角的取值范围为: 0 ⩽ θ ⩽ π 0 \leqslant \theta \leqslant \pi 0θπ

在这里插入图片描述

5.1 平行向量(共线向量)

  如果向量 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b 的夹角为 0 0 0 π \pi π(同向或反向), 就称 向量 a \boldsymbol{a} a b \boldsymbol{b} b 平行,也称作 a \boldsymbol{a} a b \boldsymbol{b} b 共线,记为 a / / b \boldsymbol{a} \kern +0.3em / \kern -0.8em/ \kern +0.3em\boldsymbol{b} a//b ,也可以写作 a ∥ b \boldsymbol{a} \parallel \boldsymbol{b} ab

  零向量与任意向量平行

5.2 垂直向量

  如果向量 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b 的夹角为 π 2 \dfrac{\pi}{2} 2π,就称向量 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b 垂直,记为 a ⊥ c \boldsymbol{a}\bot \boldsymbol{c} ac

  零向量与任意向量垂直

6. 向量的线性运算

6.1 向量加法

6.1.1 向量加法的平行四边形法则

  对于两个不平行的向量 a \boldsymbol{a} a b \boldsymbol{b} b ,将它们平移至起点重合,然后以 a , b \boldsymbol{a}, \boldsymbol{b} a,b 为邻边作平行四边形,称与 a \boldsymbol{a} a b \boldsymbol{b} b 有共同起点的对角线向量 c \boldsymbol{c} c a \boldsymbol{a} a b \boldsymbol{b} b,记为 c = a + b \boldsymbol{c=a+b} c=a+b
  此方法称为向量加法的平行四边形法则,不适用于平行向量。
在这里插入图片描述

6.1.2 向量加法的三角形法则

  把向量 b \boldsymbol{b} b 平移至起点和 a \boldsymbol{a} a 的终点重合,使其首尾相连,则从 a \boldsymbol{a} a 的起点到 b \boldsymbol{b} b 的终点所构成的向量即为 a + b \boldsymbol{a+b} a+b
  此方法称为向量加法的三角形法则,对于平行向量仍适用。
在这里插入图片描述

  对于多个向量相加,可以用平行四边形法则分步进行,也可以用三角形法则一步完成。可以看到对于多个向量相加,使用三角形法则较为方便,而平行四边形法则需要较多的辅助线。
在这里插入图片描述

6.1.3 向量加法的性质
向量加法性质公式
a + 0 = a \boldsymbol{a + 0 = a} a+0=a
交换律 a + b = b + a \boldsymbol{a + b = b+a} a+b=b+a
结合律 ( a + b ) + c = a + ( b + c ) \boldsymbol{(a + b)+c = a+(b+c)} (a+b)+c=a+(b+c)

在这里插入图片描述
在这里插入图片描述

6.1.4 向量分解

  既然两个向量可以合成另一个向量,那么反过来一个向量也可以分解成另外两个向量。
  根据平行四边形法则或三角形法则即可对向量进行分解,通常是分解成两个相互垂直且和坐标轴同向的向量。
在这里插入图片描述

6.2 向量减法

  向量减法可以看做一个向量加上另一个向量的相反向量,即 a − b = a + ( − b ) \boldsymbol{a} - \boldsymbol{b} = \boldsymbol{a} + (-\boldsymbol{b} ) ab=a+(b)
在这里插入图片描述

6.3 向量数乘

  向量数乘 即向量与一个实数的乘积。

  实数 λ \lambda λ与向量 a \boldsymbol{a} a的 乘积(简称数乘),结果为一个向量,记为 λ a \lambda \boldsymbol{a} λa

λ a \lambda \boldsymbol{a} λa 的方向规定:

  • λ > 0 \lambda > 0 λ>0 时, λ a \lambda \boldsymbol{a} λa a \boldsymbol{a} a 同方向;
  • λ < 0 \lambda < 0 λ<0 时, λ a \lambda \boldsymbol{a} λa a \boldsymbol{a} a 反方向;
  • λ = 0 \lambda =0 λ=0 时, λ a \lambda \boldsymbol{a} λa 为零向量,方向任意。

  向量 a \boldsymbol{a} a 乘以一个实数 λ \lambda λ,是对向量进行缩放,如果 λ < 0 \lambda < 0 λ<0,再加上反向

  如果 λ > 0 \lambda > 0 λ>0,那么向量的长度将缩放至 λ \lambda λ倍;
  如果 λ < 0 \lambda < 0 λ<0,那么向量的长度将缩放至 ∣ λ ∣ \left| \lambda \right| λ 倍,并将向量反向;
  如果 λ = 0 \lambda = 0 λ=0,向量将变成零向量 0 \boldsymbol{0} 0

在这里插入图片描述

6.3.1 向量数乘的性质

  向量的数乘满足下列性质( λ , μ \lambda,\mu λ,μ为实数):

向量数乘的性质公式
结合律 λ ( μ a ) = ( λ μ ) a \lambda (\mu \boldsymbol{a})=(\lambda \mu) \boldsymbol{a} λ(μa)=(λμ)a
分配率 ( λ + μ ) a = λ a + μ a (\lambda +\mu) \boldsymbol{a}=\lambda \boldsymbol{a} + \mu \boldsymbol{a} (λ+μ)a=λa+μa
  • 向量数乘的模: ∣ λ a ∣ = ∣ λ ∣ ∣ a ∣ \left| \lambda \boldsymbol{a} \right|=\left| \lambda \right| \left| \boldsymbol{a} \right| λa=λa
  • a ≠ 0 \boldsymbol{a}\ne \boldsymbol{0} a=0,则 1 ∣ a ∣ a \dfrac{1}{\left| \boldsymbol{a} \right|}\boldsymbol{a} a1a 是与 a \boldsymbol{a} a 方向相同的单位向量,通常记为 a 0 \boldsymbol{a}^0 a0,即 a 0 = 1 ∣ a ∣ a \boldsymbol{a}^0=\dfrac{1}{\left| \boldsymbol{a} \right|}\boldsymbol{a} a0=a1a
  • a ≠ 0 \boldsymbol{a}\ne \boldsymbol{0} a=0,则 a / / b \boldsymbol{a} \mathrel{/\mskip-2.5mu/} \boldsymbol{b} a//b充分必要条件为存在实数 λ \lambda λ ,使得 b = λ a \boldsymbol{b} = \lambda \boldsymbol{a} b=λa
  • P 1 , P 2 P_{1}, P_{2} P1,P2 u u u 轴上坐标分别为 u 1 , u 2 u_1,u_2 u1,u2 的两个点, e \boldsymbol{e} e 为与 u u u 轴同方向的单位向量,则有 P 1 P 2 → = ( u 2 − u 1 ) e \overrightarrow{\mathrm{P}_1\mathrm{P}_2}=\left( u_2-u_1 \right) \boldsymbol{e} P1P2 =(u2u1)e,即 将一个向量表示成向量的模 和 同向的单位向量 进行数乘的形式。

在这里插入图片描述

7. 向量的代数运算

  将向量的坐标引入后,可以将向量的运算转化为数的运算。
  对于一个坐标为 { a x , a y , a z } \{a_{x}, a_{y},a_{z}\} {ax,ay,az} 的向量 a \boldsymbol{a} a,由向量加法性质,对向量进行分解,再由向量数乘性质可以得到:
a = { a x , a y , a z } = a x i + a y j + a z k \boldsymbol{a}=\left\{ a_x,a_y,a_z \right\} =a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k} a={ax,ay,az}=axi+ayj+azk

在这里插入图片描述
  由此可以将向量运算转成数量运算,对于向量 a = { a x , a y , a z } , b = { b x , b y , b z } \boldsymbol{a}=\{a_{x}, a_{y}, a_{z}\}, \boldsymbol{b}=\{b_{x}, b_{y}, b_{z}\} a={ax,ay,az},b={bx,by,bz},有
a + b = { a x , a y , a z } + { b x , b y , b z } = ( a x i + a y j + a z k ) + ( b x i + b y j + b z k ) = ( a x + b x ) i + ( a y + b y ) j + ( a z + b z ) k = { a x + b x , a y + b y , a z + b z } \begin{aligned} \boldsymbol{a}+\boldsymbol{b} &= \left\{ a_x,a_y,a_z \right\} +\left\{ b_x,b_y,b_z \right\} \\ &= \left( a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k} \right) +\left( b_x\boldsymbol{i}+b_y\boldsymbol{j}+b_z\boldsymbol{k} \right) \\ &= \left( a_x+b_x \right) \boldsymbol{i}+\left( a_y+b_y \right) \boldsymbol{j}+\left( a_z+b_z \right) \boldsymbol{k} \\ &= \left\{ a_x+b_x,a_y+b_y,a_z+b_z \right\} \end{aligned} a+b={ax,ay,az}+{bx,by,bz}=(axi+ayj+azk)+(bxi+byj+bzk)=(ax+bx)i+(ay+by)j+(az+bz)k={ax+bx,ay+by,az+bz}
  最终我们得到如下公式

向量计算公式
向量加法 a + b = { a x , a y , a z } + { b x , b y , b z } = { a x + b x , a y + b y , a z + b z } \boldsymbol{a + b} = \left\{ a_x,a_y,a_z \right\} + \left\{ b_x,b_y,b_z \right\}=\left\{ a_x+b_x,a_y+b_y,a_z+b_z \right\} a+b={ax,ay,az}+{bx,by,bz}={ax+bx,ay+by,az+bz}
向量减法 a − b = { a x , a y , a z } − { b x , b y , b z } = { a x − b x , a y − b y , a z − b z } \boldsymbol{a - b} = \left\{ a_x,a_y,a_z \right\} - \left\{ b_x,b_y,b_z \right\}=\left\{ a_x-b_x,a_y-b_y,a_z-b_z \right\} ab={ax,ay,az}{bx,by,bz}={axbx,ayby,azbz}
向量数乘 λ a = λ { a x , a y , a z } = { λ a x , λ a y , λ a z } \lambda \boldsymbol{a} = \lambda\left\{ a_x,a_y,a_z \right\} = \left\{ \lambda a_x, \lambda a_y, \lambda a_z \right\} λa=λ{ax,ay,az}={λax,λay,λaz}

8. 向量的数量积

  向量的 数量积 即 向量和向量的一种乘积,也称为 点积 (dot product)(点乘)、内积标量积 (scalar product)。(向量和向量的乘积另外还有向量积、混合积、逐元素积等。)
  由标量积的名字可以得知,乘积结果为标量

  设有两个相同维度的向量 a \boldsymbol{a} a b \boldsymbol{b} b θ \theta θ a \boldsymbol{a} a b \boldsymbol{b} b 的夹角,则将数值 ∣ a ∣ ∣ b ∣ cos ⁡ θ \left| \boldsymbol{a} \right| \left| \boldsymbol{b} \right| \cos \theta abcosθ 称为 a \boldsymbol{a} a 与向量 b \boldsymbol{b} b数量积(也叫内积或点积),记为 a ⋅ b \boldsymbol{a \cdot b} ab(常读作向量a点乘向量b),即
a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ (8.1) \boldsymbol{a \cdot b}=\left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right|\cos \theta \tag{8.1} ab=abcosθ(8.1)

在这里插入图片描述

  数量积要求两个向量同维度,否则不可运算。
  向量 a \boldsymbol{a} a 与自身的数量积,我们记为 a 2 \boldsymbol{a}^{2} a2,即 a 2 = a ⋅ a (8.2) \boldsymbol{a}^{2}= \boldsymbol{a} \cdot \boldsymbol{a} \tag{8.2} a2=aa(8.2)

8.1 数量积的性质

数量积的性质公式
交换律 a ⋅ b = b ⋅ a \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{a} ab=ba
分配律 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c \boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c} a(b+c)=ab+ac
结合律 λ ( a ⋅ b ) = ( λ a ) ⋅ b = a ⋅ ( λ b ) \lambda (\boldsymbol{a} \cdot \boldsymbol{b}) = (\lambda \boldsymbol{a}) \cdot \boldsymbol{ b} = \boldsymbol{ a} \cdot (\lambda \boldsymbol{ b}) λ(ab)=(λa)b=a(λb)

  特别需要注意的是,在数量积中 ( a ⋅ b ) ⋅ c ≠ a ⋅ ( b ⋅ c ) \left( \boldsymbol{a}\cdot \boldsymbol{b} \right) \cdot \boldsymbol{c}\ne \boldsymbol{a}\cdot \left( \boldsymbol{b}\cdot \boldsymbol{c} \right) (ab)c=a(bc)  数量积是一个实数, ( a ⋅ b ) ⋅ c = λ c \left( \boldsymbol{a}\cdot \boldsymbol{b} \right) \cdot \boldsymbol{c} = \lambda \boldsymbol{c} (ab)c=λc ,结果是和 c \boldsymbol{c} c 同向的向量,而 a ⋅ ( b ⋅ c ) = μ a \boldsymbol{a} \cdot \left( \boldsymbol{b}\cdot \boldsymbol{c} \right) = \mu \boldsymbol{a} a(bc)=μa,是和 a \boldsymbol{a} a 同向的向量,所以左右两边乘积结果并不相等。

由公式 a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \boldsymbol{a \cdot b}=\left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right|\cos \theta ab=abcosθ 可得,

  • a ⋅ a = ∣ a ∣ 2 \boldsymbol{a} \cdot \boldsymbol{a} =\left| \boldsymbol{a} \right|^{2} aa=a2
  • a ⊥ b \boldsymbol{a}\bot \boldsymbol{b} ab 的充分必要条件为 a ⋅ b = 0 \boldsymbol{a} \cdot \boldsymbol{b} = 0 ab=0

8.2 数量积的代数运算

数量积代数运算公式
二维向量的数量积 { a x , a y } ⋅ { b x , b y } = a x b x + a y b y \{ a_x,a_y\} \cdot \{ b_x,b_y\} = a_{x} b_{x} + a_{y} b_{y} {ax,ay}{bx,by}=axbx+ayby
三维向量的数量积 { a x , a y , a z } ⋅ { b x , b y , b z } = a x b x + a y b y + a z b z \{ a_x,a_y,a_z\} \cdot \{ b_x,b_y,b_z\} = a_{x}b_{x} + a_{y}b_{y}+a_{z}b_{z} {ax,ay,az}{bx,by,bz}=axbx+ayby+azbz
n n n 维向量的数量积 { a 1 , a 2 , a 3 , … , a n } ⋅ { b 1 , b 2 , b 3 , … , b n } = a 1 b 1 + a 2 b 2 + a 3 b 3 , + ⋯ + a n b n \{ a_1,a_2,a_3, \dots, a_{n}\} \cdot \{ b_1,b_2,b_3, \dots, b_{n}\} = a_{1}b_{1} + a_{2}b_{2}+a_{3}b_{3}, + \dots +a_{n}b_{n} {a1,a2,a3,,an}{b1,b2,b3,,bn}=a1b1+a2b2+a3b3,++anbn

  设三维向量 a = { a x , a y , a z } , b = { b x , b y , b z } \boldsymbol{a} = \left\{ a_x,a_y,a_z \right\}, \boldsymbol{b} = \left\{ b_x,b_y,b_z \right\} a={ax,ay,az},b={bx,by,bz},那么根据数量积分配律有
a ⋅ b = { a x , a y , a z } ⋅ { b x , b y , b z } = ( a x i + a y j + a z k ) ⋅ ( b x i + b y j + b z k ) = a x b x i ⋅ i + a y b y j ⋅ j + a z b z k ⋅ k + ( a x b y + a y b x ) i ⋅ j + ( a y b z + a z b y ) j ⋅ k + ( a x b z + a z b x ) i ⋅ k (8.2.1) \begin{aligned} \boldsymbol{a} \cdot \boldsymbol{b} &=\{ a_x,a_y,a_z \} \cdot \{ b_x,b_y,b_z \} \\ &= \left( a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k} \right) \cdot \left( b_x\boldsymbol{i}+b_y\boldsymbol{j}+b_z\boldsymbol{k} \right) \\ &= a_{x} b_{x} \boldsymbol{i}\cdot \boldsymbol{i} + a_{y} b_{y} \boldsymbol{j} \cdot \boldsymbol{j} + a_{z} b_{z} \boldsymbol{k} \cdot \boldsymbol{k} + (a_{x} b_{y} + a_{y} b_{x} )\boldsymbol{i} \cdot \boldsymbol{j} + (a_{y} b_{z} + a_{z} b_{y} )\boldsymbol{j} \cdot \boldsymbol{k} + (a_{x} b_{z} + a_{z} b_{x} ) \boldsymbol{i} \cdot \boldsymbol{k} \end{aligned} \tag{8.2.1} ab={ax,ay,az}{bx,by,bz}=(axi+ayj+azk)(bxi+byj+bzk)=axbxii+aybyjj+azbzkk+(axby+aybx)ij+(aybz+azby)jk+(axbz+azbx)ik(8.2.1)   因为在直角坐标系中,基本单位向量 i , j , k \boldsymbol{i, j, k} i,j,k 两两垂直并且向量长度为1 ,所以得到
{ i ⋅ i = j ⋅ j = k ⋅ k = 1 i ⋅ j = j ⋅ k = i ⋅ k = 0 (8.2.2) \left\{ \begin{array}{c} \boldsymbol{i}\cdot \boldsymbol{i} = \boldsymbol{j}\cdot \boldsymbol{j} = \boldsymbol{k}\cdot \boldsymbol{k} = 1\\ \boldsymbol{i}\cdot \boldsymbol{j} = \boldsymbol{j}\cdot \boldsymbol{k} = \boldsymbol{i}\cdot \boldsymbol{k} = 0\\ \end{array} \right. \tag{8.2.2} {ii=jj=kk=1ij=jk=ik=0(8.2.2)
  即互相垂直的向量点乘得 0 0 0,单位向量自身点乘得 1 1 1
  将 ( 8.2.2 ) (8.2.2) (8.2.2) 代入 ( 8.2.1 ) (8.2.1) (8.2.1),最终得到三维向量的数量积:
a ⋅ b = a x b x + a y b y + a z b z (8.2.3) \boldsymbol{a} \cdot \boldsymbol{b} = a_{x} b_{x} + a_{y} b_{y}+a_{z} b_{z} \tag{8.2.3} ab=axbx+ayby+azbz(8.2.3)

  表明 两向量的数量积 等于 其对应坐标乘积之和。

在这里插入图片描述

  如果是二维向量,那么有
a ⋅ b = a x b x + a y b y (8.2.4) \boldsymbol{a} \cdot \boldsymbol{b} = a_{x} b_{x} + a_{y} b_{y} \tag{8.2.4} ab=axbx+ayby(8.2.4)

8.3 数量积的几何意义

两向量的数量积 等于 其中一个向量的长度 与 另一个向量在这个向量的方向上的投影长度 的乘积。

  两向量数量积公式为 a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \boldsymbol{a \cdot b}=\left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \cos \theta ab=abcosθ,即两个向量的模的乘积再乘上夹角的余弦。
  我们可以将这个公式表示为 ∣ a ∣ ⋅ ( ∣ b ∣ cos ⁡ θ ) \left| \boldsymbol{a}\right| \cdot (\left| \boldsymbol{b} \right| \cos \theta) a(bcosθ) ( ∣ a ∣ cos ⁡ θ ) ⋅ ∣ b ∣ (\left| \boldsymbol{a} \right| \cos \theta) \cdot \left| \boldsymbol{b} \right| (acosθ)b ,而这个 向量的模 与 夹角的余弦 的乘积,就是向量在另一个向量上的投影的长度

a \boldsymbol{a} a b \boldsymbol{b} b 上的投影长度为: ∣ a ∣ cos ⁡ θ \left| \boldsymbol{a} \right| \cos \theta acosθ
b \boldsymbol{b} b a \boldsymbol{a} a 上的投影长度为: ∣ b ∣ cos ⁡ θ \left| \boldsymbol{b} \right| \cos \theta bcosθ

  如下图所示:
在这里插入图片描述
  我们选取另一个向量进行投影,可以看到结论依然成立。
在这里插入图片描述
  所以从几何意义可以得知:

  • 如果两个向量相互垂直,那么向量的投影长度为0,数量积为0。
  • 如果在两个向量之中,其中一个向量的长度为1,那么数量积即为另一个向量在这个向量上的投影长度。

8.4 数量积的运用:计算两向量间的夹角

  对数量积公式 a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \boldsymbol{a \cdot b}=\left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \cos \theta ab=abcosθ 进行变换,得
cos ⁡ θ = a ⋅ b ∣ a ∣ ∣ b ∣ (8.4.1) \cos \theta = \frac{\boldsymbol{a \cdot b}} {\left| \boldsymbol{a} \right| \left| \boldsymbol{b} \right|} \tag{8.4.1} cosθ=abab(8.4.1)  所以当 a ≠ 0 , b ≠ 0 \boldsymbol{a \ne 0} , \boldsymbol{b \ne 0} a=0,b=0 (即 a \boldsymbol{a} a b \boldsymbol{b} b 都不是零向量)时,可以由公式 ( 8.4.1 ) (8.4.1) (8.4.1)计算出两向量间夹角的余弦值。

cos ⁡ θ > 0 \cos \theta > 0 cosθ>0 时,向量之间的夹角 θ \theta θ 小于 90 ° 90 \degree 90°
cos ⁡ θ = 0 \cos \theta = 0 cosθ=0 时,向量之间的夹角 θ \theta θ 等于 90 ° 90 \degree 90°
cos ⁡ θ < 0 \cos \theta < 0 cosθ<0 时,向量之间的夹角 θ \theta θ 大于 90 ° 90 \degree 90° 小于 180 ° 180 \degree 180°

在这里插入图片描述

  再通过反余弦即可计算出两向量间的夹角:
θ = arccos ⁡ a ⋅ b ∣ a ∣ ∣ b ∣ (8.4.2) \theta =\arccos \frac{\boldsymbol{a \cdot b}} {\left| \boldsymbol{a} \right| \left| \boldsymbol{b} \right|} \tag{8.4.2} θ=arccosabab(8.4.2)  当两向量相互垂直时,夹角 θ \theta θ π 2 \dfrac{\pi}{2} 2π − π 2 -\dfrac{\pi}{2} 2π cos ⁡ θ = 0 \cos \theta = 0 cosθ=0 ,由公式 ( 8.4.1 ) (8.4.1) (8.4.1)可得,此时 a ⋅ b = 0 \boldsymbol{a \cdot b} = 0 ab=0,可得:

a ⊥ b \boldsymbol{a}\bot \boldsymbol{b} ab 的充分必要条件为 a ⋅ b = 0 \boldsymbol{a} \cdot \boldsymbol{b} = 0 ab=0

  所以可以通过向量的数量积是否为0判断向量是否相互垂直

8.5 数量积的运用:计算向量投影

   a \boldsymbol{a} a b \boldsymbol{b} b 上的投影 p \boldsymbol{p} p 的长度 ∣ p ∣ \left| \boldsymbol{p} \right| p ∣ p ∣ = ∣ a ∣ cos ⁡ θ = ∣ a ∣ ∣ b ∣ cos ⁡ θ ∣ b ∣ = a ⋅ b ∣ b ∣ (8.5.1) \left| \boldsymbol{p} \right|=\left| \boldsymbol{a} \right| \cos \theta=\dfrac{\left| \boldsymbol{a} \right| \left| \boldsymbol{b} \right| \cos \theta}{\left| \boldsymbol{b} \right|} =\dfrac{\boldsymbol{a}\cdot \boldsymbol{b}}{\left| \boldsymbol{b} \right|} \tag{8.5.1} p=acosθ=babcosθ=bab(8.5.1)

  向量和一个单位向量点乘,数量积为该向量在单位向量上投影的长度,即 a ⋅ e = ∣ a ∣ cos ⁡ θ \boldsymbol{a} \cdot \boldsymbol{e} = \left| \boldsymbol{a}\right| \cos \theta ae=acosθ,所以可以用来求向量的投影长度,所以公式还可变为
{ e = b ∣ b ∣ , ( 即 e 为与 b 同向的单位向量 ) ∣ p ∣ = a ⋅ e (8.5.2) \left\{ \begin{aligned} \boldsymbol{e}&=\frac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|}\text{,}\left( \text{即}\boldsymbol{e}\text{为与}\boldsymbol{b}\text{同向的单位向量} \right)\\ \left| \boldsymbol{p} \right|&=\boldsymbol{a}\cdot \boldsymbol{e}\\ \end{aligned} \right. \tag{8.5.2} ep=bb(e为与b同向的单位向量)=ae(8.5.2)

  一个向量等于向量的长度与之同向的单位向量乘积,即 p = ∣ p ∣ e \boldsymbol{p}=\left| \boldsymbol{p} \right|\boldsymbol{e} p=pe。所以只要知道 p \boldsymbol{p} p 的长度和与 p \boldsymbol{p} p同向的单位向量 e \boldsymbol{e} e 就可以求出 p \boldsymbol{p} p

  投影 p \boldsymbol{p} p 的方向与 b \boldsymbol{b} b 的方向相同,与 b \boldsymbol{b} b 同向的单位向量 e \boldsymbol{e} e b ∣ b ∣ \dfrac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|} bb,从公式 ( 8.5.2 ) (8.5.2) (8.5.2)中我们已经得到 ∣ p ∣ = a ⋅ e \left| \boldsymbol{p} \right|=\boldsymbol{a}\cdot \boldsymbol{e} p=ae,所以
{ e = b ∣ b ∣ p = ∣ p ∣ e = ( a ⋅ e ) e (8.5.3) \left\{ \begin{aligned} \boldsymbol{e}&=\frac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|}\\ \boldsymbol{p}&=\left| \boldsymbol{p} \right|\boldsymbol{e}=\left( \boldsymbol{a}\cdot \boldsymbol{e} \right) \boldsymbol{e}\\ \end{aligned} \right. \tag{8.5.3} ep=bb=pe=(ae)e(8.5.3)

  同时,也可以将公式 ( 8.5.3 ) (8.5.3) (8.5.3)中的单位向量 e \boldsymbol{e} e消除,写成只含原向量 a \boldsymbol{a} a b \boldsymbol{b} b的形式:
p = ( a ⋅ e ) e = ( a ⋅ b ∣ b ∣ ) b ∣ b ∣ = a ⋅ b ∣ b ∣ 2 b (8.5.4) \boldsymbol{p}=( \boldsymbol{a}\cdot \boldsymbol{e} ) \boldsymbol{e} = ( \boldsymbol{a}\cdot \frac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|} )\frac{\boldsymbol{b}}{\left| \boldsymbol{b} \right|} = \frac{\boldsymbol{a}\cdot \boldsymbol{b}}{\left| \boldsymbol{b} \right|^{2}}\boldsymbol{b} \tag{8.5.4} p=(ae)e=(abb)bb=b2abb(8.5.4)

在这里插入图片描述

9. 向量的向量积

  向量的向量积也被称为外积叉积,乘积结果是一个与相乘的两个向量垂直向量

9.1 向量积的概念

  向量 a \boldsymbol{a} a b \boldsymbol{b} b向量积 被定义为与 a \boldsymbol{a} a b \boldsymbol{b} b 都垂直的向量,记为 a × b \boldsymbol{a} \times \boldsymbol{b} a×b ,并且向量积的模为 ∣ a ∣ ∣ b ∣ sin ⁡ θ \left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \sin \theta absinθ ,其中 θ \theta θ a \boldsymbol{a} a b \boldsymbol{b} b 的夹角,即
∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ (9.1.1) \left| \boldsymbol{a} \times \boldsymbol{b} \right| = \left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \sin \theta \tag{9.1.1} a×b=absinθ(9.1.1)   与向量 a \boldsymbol{a} a 和向量 b \boldsymbol{b} b 都垂直的方向有两个,需要进一步确定向量积 a × b \boldsymbol{a} \times \boldsymbol{b} a×b 的方向。

  设向量 c \boldsymbol{c} c 为垂直于 a \boldsymbol{a} a b \boldsymbol{b} b 的单位向量并且 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 的方向符合右手法则,以 c \boldsymbol{c} c 的方向作为 a × b \boldsymbol{a} \times \boldsymbol{b} a×b 的方向。
  如下图所示,对于 a × b \boldsymbol{a} \times \boldsymbol{b} a×b ,将右手的四指由 a \boldsymbol{a} a 顺着 a , b \boldsymbol{a}, \boldsymbol{b} a,b 夹角 θ \theta θ 方向 旋向 b \boldsymbol{b} b,此时大拇指方向即为向量积的方向

  旋转时需要注意,在同一平面上, a \boldsymbol{a} a 是有两个旋转方向可以旋向 b \boldsymbol{b} b 的,此时需要选择旋转角较小的方向,即 a \boldsymbol{a} a b \boldsymbol{b} b 之间的夹角 θ \theta θ( θ ⩽ π \theta \leqslant \pi θπ)。否则大拇指的方向完全相反

右手法则向量积
在这里插入图片描述在这里插入图片描述
  数学中的三维空间直角坐标系符合右手法则,如下所示, z = x × y \boldsymbol{z} = \boldsymbol{x} \times \boldsymbol{y} z=x×y
在这里插入图片描述

   a \boldsymbol{a} a b \boldsymbol{b} b 的向量积长度为 ∣ a ∣ ∣ b ∣ sin ⁡ θ \left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \sin \theta absinθ,由此可知,当两个向量是平行向量 或者 其中至少有一个是零向量时,向量积为零向量。

向量积只用于三维向量,并不适用于二维向量。

9.2 向量积的几何意义

  向量积 a × b \boldsymbol{a} \times \boldsymbol{b} a×b 垂直于向量 a \boldsymbol{a} a 和向量 b \boldsymbol{b} b,所以当 a \boldsymbol{a} a 不平行于 b \boldsymbol{b} b 时,向量积 a × b \boldsymbol{a} \times \boldsymbol{b} a×b 垂直于由 a \boldsymbol{a} a b \boldsymbol{b} b 所确定的平面
  向量积的长度 ∣ a ∣ ∣ b ∣ sin ⁡ θ \left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \sin \theta absinθ 为以 a \boldsymbol{a} a, b \boldsymbol{b} b 为邻边所构成的平行四边形的面积。

在这里插入图片描述

由几何意义可知,向量积并不适用于二维向量。

9.3 向量积的性质

向量积的性质公式
反交换律 a × b = − ( b × a ) \boldsymbol{a} \times \boldsymbol{b} = -(\boldsymbol{b} \times \boldsymbol{a}) a×b=(b×a)
分配律 a × ( b + c ) = a × b + a × c \boldsymbol{a} \times (\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} \times \boldsymbol{b} + \boldsymbol{a} \times \boldsymbol{c} a×(b+c)=a×b+a×c
结合律 λ ( a × b ) = ( λ a ) × b = a × ( λ b ) \lambda (\boldsymbol{a} \times \boldsymbol{b}) = (\lambda \boldsymbol{a}) \times \boldsymbol{ b} = \boldsymbol{ a} \times (\lambda \boldsymbol{ b}) λ(a×b)=(λa)×b=a×(λb)

  由向量积长度公式 ∣ a ∣ ∣ b ∣ sin ⁡ θ \left| \boldsymbol{a} \right|\left| \boldsymbol{b} \right| \sin \theta absinθ,可知,当两个向量夹角 θ \theta θ 0 0 0 π \pi π 时,即两个平行时,向量积为零向量 0 \boldsymbol{0} 0

  • a / / b \boldsymbol{a} \kern +0.3em / \kern -0.8em/ \kern +0.3em\boldsymbol{b} a//b 的充分必要条件为 a × b = 0 \boldsymbol{a} \times \boldsymbol{b}=\boldsymbol{0} a×b=0
  • a × a = 0 \boldsymbol{a} \times \boldsymbol{a}=\boldsymbol{0} a×a=0

9.4 向量积的代数运算

  设有向量 a = { a x , a y , a z } \boldsymbol{a}=\{a_{x}, a_{y},a_{z}\} a={ax,ay,az} , b = { b x , b y , b z } \boldsymbol{b}=\{b_{x}, b_{y},b_{z}\} b={bx,by,bz},则 a \boldsymbol{a} a b \boldsymbol{b} b 的向量积为
a × b = { a x , a y , a z } × { b x , b y , b z } = ( a x i + a y j + a z k ) × ( b x i + b y j + b z k ) = ( a y b z − a z b y ) i − ( a x b z − a z b x ) j + ( a x b y − a y b x ) k = { a y b z − a z b y , − ( a x b z − a z b x ) , a x b y − a y b x } \begin{aligned} \boldsymbol{a}\times \boldsymbol{b}&=\left\{ a_x,a_y,a_z \right\} \times \left\{ b_x,b_y,b_z \right\} \\ &=\left( a_x\boldsymbol{i}+a_y\boldsymbol{j}+a_z\boldsymbol{k} \right) \times \left( b_x\boldsymbol{i}+b_y\boldsymbol{j}+b_z\boldsymbol{k} \right) \\ &=\left( a_yb_z-a_zb_y \right) \boldsymbol{i}-\left( a_xb_z-a_zb_x \right) \boldsymbol{j}+\left( a_xb_y-a_yb_x \right) \boldsymbol{k} \\ &=\left\{ a_yb_z-a_zb_y, -\left( a_xb_z-a_zb_x \right) , a_xb_y-a_yb_x \right\} \end{aligned} a×b={ax,ay,az}×{bx,by,bz}=(axi+ayj+azk)×(bxi+byj+bzk)=(aybzazby)i(axbzazbx)j+(axbyaybx)k={aybzazby,(axbzazbx),axbyaybx}   这个结果可以借助 三阶行列式 的来简化表示。

  对于二阶行列式,我们有如下规定
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \left| \begin{matrix} a_{11}& a_{12}\\ a_{21}& a_{22}\\ \end{matrix} \right| = a_{11}a_{22} - a_{12}a_{21} a11a21a12a22 =a11a22a12a21   可以用 对角线法则(主对角线上的元素乘积减去副对角线上的乘积) 来记忆。
  如下图,主对角线上为实线,副对角线为虚线。

在这里插入图片描述
  对于三阶行列式,有 ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 31 ∣ a 21 a 22 a 31 a 32 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \begin{aligned} \left| \begin{matrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{matrix} \right| &= a_{11}\left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right| - a_{12}\left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right| + a_{31}\left| \begin{matrix} a_{21}& a_{22}\\ a_{31}& a_{32}\\ \end{matrix} \right| \\ &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} \end{aligned} a11a21a31a12a22a32a13a23a33 =a11 a22a32a23a33 a12 a21a31a23a33 +a31 a21a31a22a32 =a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32  同样地,对于上面的计算结果,依然可以用 对角线法则(主对角线上的元素乘积减去副对角线上的乘积) 来记忆。
  如下图,主对角线为实线,副对角线为虚线,同时,当对角线上元素数不足3时,将跨越对角线来选取剩余元素。
在这里插入图片描述
  向量积的计算公式为
a × b = ∣ i j k a x a y a z b x b y b z ∣ = ∣ a y a z b y b z ∣ i − ∣ a x a z b x b z ∣ j + ∣ a x a y b x b y ∣ k (9.4.1) \boldsymbol{a}\times \boldsymbol{b}=\left| \begin{matrix} \boldsymbol{i}& \boldsymbol{j}& \boldsymbol{k}\\ a_x& a_y& a_z\\ b_x& b_y& b_z\\ \end{matrix} \right| = \left| \begin{matrix} a_{y}& a_{z}\\ b_{y}& b_{z}\\ \end{matrix} \right| \boldsymbol{i} - \left| \begin{matrix} a_{x}& a_{z}\\ b_{x}& b_{z}\\ \end{matrix} \right| \boldsymbol{j}+ \left| \begin{matrix} a_{x}& a_{y}\\ b_{x}& b_{y}\\ \end{matrix} \right| \boldsymbol{k} \tag{9.4.1} a×b= iaxbxjaybykazbz = aybyazbz i axbxazbz j+ axbxayby k(9.4.1)
也可写作
a × b = { ∣ a y a z b y b z ∣ , − ∣ a x a z b x b z ∣ , ∣ a x a y b x b y ∣ } (9.4.2) \boldsymbol{a}\times \boldsymbol{b} = \{ \left| \begin{matrix} a_{y}& a_{z}\\ b_{y}& b_{z}\\ \end{matrix} \right| , - \left| \begin{matrix} a_{x}& a_{z}\\ b_{x}& b_{z}\\ \end{matrix} \right| , \left| \begin{matrix} a_{x}& a_{y}\\ b_{x}& b_{y}\\ \end{matrix} \right| \} \tag{9.4.2} a×b={ aybyazbz , axbxazbz , axbxayby }(9.4.2)

10. 向量的混合积

  设有向量 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c,称 ( a × b ) ⋅ c \left( \boldsymbol{a}\times \boldsymbol{b} \right) \cdot \boldsymbol{c} (a×b)c a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c混合积,记为 [ a b c ] \left[ \boldsymbol{abc} \right] [abc],即
[ a b c ] = ( a × b ) ⋅ c \left[ \boldsymbol{abc} \right] = \left( \boldsymbol{a}\times \boldsymbol{b} \right) \cdot \boldsymbol{c} [abc]=(a×b)c
  混合积 [ a b c ] \left[ \boldsymbol{abc} \right] [abc] 是向量积 a × b \boldsymbol{a}\times \boldsymbol{b} a×b 点乘 向量 c \boldsymbol{c} c,所以混合积为标量

10.1 混合积的几何意义

   向量 a \boldsymbol{a} a b \boldsymbol{b} b 的向量积 a × b \boldsymbol{a}\times \boldsymbol{b} a×b 垂直于 a \boldsymbol{a} a b \boldsymbol{b} b ,而数量积可以判断两个向量是否垂直,所以当混合积为 0 0 0 时,说明向量积 a × b \boldsymbol{a}\times \boldsymbol{b} a×b 也垂直于向量 c \boldsymbol{c} c , 可得向量 a , b , c \boldsymbol{a} , \boldsymbol{b}, \boldsymbol{c} a,b,c 共面,即将向量的起点平移至重合后,向量在同一个空间平面上。
在这里插入图片描述

10.2 混合积的代数运算

  设有向量 a = { a x , a y , a z } \boldsymbol{a}=\{a_{x}, a_{y},a_{z}\} a={ax,ay,az} , b = { b x , b y , b z } \boldsymbol{b}=\{b_{x}, b_{y},b_{z}\} b={bx,by,bz} c = { c x , c y , c z } \boldsymbol{c}=\{c_{x}, c_{y},c_{z}\} c={cx,cy,cz},由公式 ( 9.4.2 ) (9.4.2) (9.4.2) a × b = { ∣ a y a z b y b z ∣ , − ∣ a x a z b x b z ∣ , ∣ a x a y b x b y ∣ } \boldsymbol{a}\times \boldsymbol{b} = \{ \left| \begin{matrix} a_{y}& a_{z}\\ b_{y}& b_{z}\\ \end{matrix} \right| , - \left| \begin{matrix} a_{x}& a_{z}\\ b_{x}& b_{z}\\ \end{matrix} \right| , \left| \begin{matrix} a_{x}& a_{y}\\ b_{x}& b_{y}\\ \end{matrix} \right| \} a×b={ aybyazbz , axbxazbz , axbxayby }   因此
( a × b ) ⋅ c = { ∣ a y a z b y b z ∣ , − ∣ a x a z b x b z ∣ , ∣ a x a y b x b y ∣ } ⋅ { c x , c y , c z } = { ∣ a y a z b y b z ∣ c x , − ∣ a x a z b x b z ∣ c y , ∣ a x a y b x b y ∣ c z } = ∣ a x a y a z b x b y b z c x c y c z ∣ (10.2.1) \begin{aligned} \left( \boldsymbol{a}\times \boldsymbol{b} \right) \cdot \boldsymbol{c} &= \{ \left| \begin{matrix} a_{y}& a_{z}\\ b_{y}& b_{z}\\ \end{matrix} \right| , - \left| \begin{matrix} a_{x}& a_{z}\\ b_{x}& b_{z}\\ \end{matrix} \right| , \left| \begin{matrix} a_{x}& a_{y}\\ b_{x}& b_{y}\\ \end{matrix} \right| \} \cdot \left\{ c_x, c_y, c_z \right\} \\ &= \{ \left| \begin{matrix} a_{y}& a_{z}\\ b_{y}& b_{z}\\ \end{matrix} \right| c_{x}, - \left| \begin{matrix} a_{x}& a_{z}\\ b_{x}& b_{z}\\ \end{matrix} \right| c_{y}, \left| \begin{matrix} a_{x}& a_{y}\\ b_{x}& b_{y}\\ \end{matrix} \right| c_{z} \} \\ &= \left| \begin{matrix} a_x& a_y& a_z\\ b_x& b_y& b_z\\ c_x& c_y& c_z\\ \end{matrix} \right| \end{aligned} \tag{10.2.1} (a×b)c={ aybyazbz , axbxazbz , axbxayby }{cx,cy,cz}={ aybyazbz cx, axbxazbz cy, axbxayby cz}= axbxcxaybycyazbzcz (10.2.1)

行列式的性质(任意交换两行或两列,其行列式的值取相反数),所以交换两次后结果不变。

10.3 混合积的性质

向量 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 共面的充分必要条件为 [ a b c ] = 0 \left[ \boldsymbol{abc} \right] = 0 [abc]=0

  混合积为一个三阶行列式的值,由 行列式的性质(任意交换两行或两列,其行列式的值取相反数) 得, [ a b c ] = [ b c a ] = [ c a b ] (10.3.1) \left[ \boldsymbol{abc} \right] = \left[ \boldsymbol{bca} \right] = \left[ \boldsymbol{cab} \right] \tag{10.3.1} [abc]=[bca]=[cab](10.3.1)

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

依稀_yixy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值