【深度学习】2024年深度学习入门指南

本文介绍了深度学习的基本概念、流程,包括数据预处理、模型设计(如使用Keras构建简单判别模型)、训练以及TensorFlow和Keras框架的比较。重点强调了数据的重要性、模型选择的标准,如性能、社区支持和易用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习(Deep Learning,DL)是机器学习(Machine Learning,ML)领域中的一个研究方向,作用是帮助机器学习项目更接近于人工智能(Artificial Intelligence)。

深度学习主要是学习样本数据的内在规律和表示层次,学习过程中获得的信息对诸如文字、图像和声音等数据的解释很有帮助。深度学习的最终目标是让机器能够像人一样具备分析能力,可以自动识别文字、图像和声音等数据。

深度学习是一个复杂的机器学习算法,目前在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了令人瞩目的成果。深度学习解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

图片

  1. 深度学习的基本步骤

1.1   第一步:数据的准备

要进行深度学习的第一步也是最重要的一步,就是数据的准备。数据的来源多种多样,既有不同类型的数据集,也有根据项目需求由项目组自行准备的数据集。本例中笔者准备一份酒店评论的数据集,形式如图 1.4 所示。

图片

这里由逗号将一个文本分成两部分,分别是情感分类和评价主体。其中标记为数字 “1”的是正面评论,标记为数字“0”的是负面评论。

1.2   第二步:数据的处理

我们遇到的第一个问题就是数据的处理。对于计算机来说,直接的文本文字是计算机所不能理解的,因此一个最简单的办法是将文字转化成数字符号进行替代,之后对每个数字生成一个独一无二的“指纹”,也就是“词嵌入(Word Embedding)”。在这里读者只需要将其理解成使用一个“指纹”来替代汉字字符。代码处理如下:

(1)创建 3 个“容器”,对切分出的字符进行存储。

labels = []       #用于存储情感分类,形如[1,1,1,0,0,0,1] vocab = set()     #set 类型,用以存放不重复的字符context = []      #存放文本列表

(2)读取字符和文本。

with open("ChnSentiCorp.txt",mode="r",encoding="UTF-8") as emotion_file: for line in emotion_file.readlines():  #读取  txt 文件line = line.strip().split(",")         #将每行数据以“,”进行分隔labels.append(int(line[0]))            #读取分类  label text = line[1]                         #获取每行的文本context.append(text)                   #存储文本内容for char in text:vocab.add(char)       #将字符依次读取到字库中,确保不产生重复

(3)读取字符并获得字符的长度。

voacb_list = list(sorted(vocab))      #将  set 类型的字库排序并转化成  list 格式print(len(voacb_list))                #打印字符的个数:3508

(4)将文本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值