嵌入模型BAAI/bge-small-zh-v1.5下载(不用魔法)

# -*- coding:utf-8 -*-
# @Author: 喵酱
# @time: 2025 - 04 -05
# @File: miao_test.py
# desc:
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from transformers import AutoModel, AutoTokenizer

model_name = "BAAI/bge-small-zh-v1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# 保存模型到本地目录(例如 ./bge-small-zh-v1.5)
save_path = "./bge-small-zh-v1.5"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
if __name__ == '__main__':
    print(f"模型已保存到 {save_path}")

<think>嗯,用户之前问过embedder-deepseek是什么,现在又接着问大模型嵌入工具怎么用。这说明他对嵌入工具的具体应用方法感兴趣,可能想实际应用在自己的项目里。首先,我需要确定用户是否已经了解嵌入的基本概念,但考虑到他之前的问题,可能已经有一些基础。所以接下来需要详细说明使用步骤,同时结合实际例子,帮助他理解。 用户可能想知道如何开始使用这些工具,比如是否需要编程基础,具体的API调用方法,或者有没有现成的库可以直接用。应该分步骤讲解,从选择工具、获取API、安装环境到具体应用场景,比如文本相似度或分类。还要注意提到不同模型的特点,比如OpenAI和DeepSeek的区别,特别是中文支持,可能用户更关注中文场景下的优化。 另外,用户可能关心成本和效率问题,比如免费资源或者本地部署的选项。需要提到Hugging Face的模型,以及如何用Sentence Transformers库来本地运行,这样用户可以根据自己的需求选择云端还是本地。同时,给出示例代码会让用户更容易上手,但要注意代码的简洁和解释,避免太技术化。 还要考虑用户的实际应用场景,比如是做搜索系统还是推荐系统,不同的场景可能需要不同的处理方式。最后,提醒注意事项,比如输入长度限制和模型选择的重要性,帮助用户避免常见错误。总之,回答要结构清晰,步骤明确,兼顾理论和实操,让用户能一步步跟着做,同时解决他可能的隐藏需求,比如成本、中文支持等。</think>好的!大模型嵌入工具(Embedding Tools)主要用于将文本、图像等数据转化为向量表示,从而支持语义分析、相似度计算等任务。以下是具体使用方法和常见场景的逐步说明: --- ### **一、核心使用步骤** #### 1. **选择嵌入工具** - **云端API**:如 OpenAI 的 `text-embedding-ada-002`、DeepSeek 的嵌入模型(若有)、Cohere Embed 等。 - **本地模型**:如 Hugging Face 的 `Sentence-BERT`、`BGE`(智源研究院)等。 #### 2. **获取访问权限** - **云端服务**:注册账号并获取API Key(例如OpenAI需在[平台](https://platform.openai.com/)创建Key)。 - **本地模型**:通过 `pip` 安装库(如 `sentence-transformers`)。 #### 3. **调用嵌入接口** 以 **OpenAI API** 为例(Python代码): ```python from openai import OpenAI client = OpenAI(api_key="YOUR_API_KEY") # 输入文本 text = "深度学习模型嵌入工具如何使用?" # 调用嵌入接口 response = client.embeddings.create( input=text, model="text-embedding-ada-002" ) # 提取向量 embedding = response.data[0].embedding print(len(embedding)) # 输出维度(如1536) ``` #### 4. **应用场景** ```python # 示例:计算两个文本的相似度 from sklearn.metrics.pairwise import cosine_similarity embedding1 = [...] # 文本1的向量 embedding2 = [...] # 文本2的向量 similarity = cosine_similarity([embedding1], [embedding2])[0][0] print(f"相似度:{similarity:.2f}") ``` --- ### **二、典型应用场景** #### 1. **语义搜索** - 将用户查询和文档库中的文本全部转换为向量,通过余弦相似度匹配最相关结果。 - **工具推荐**:Elasticsearch + 嵌入模型(替代传统关键词搜索)。 #### 2. **文本分类/聚类** -嵌入向量作为特征输入分类器(如SVM、神经网络)。 - **代码示例(K-means聚类)**: ```python from sklearn.cluster import KMeans import numpy as np # 假设embeddings是多个文本的向量列表 embeddings = np.array([embedding1, embedding2, embedding3]) kmeans = KMeans(n_clusters=2).fit(embeddings) print(kmeans.labels_) # 输出聚类标签 ``` #### 3. **问答系统** - 将问题与知识库中的答案段落进行向量匹配,返回最接近的答案。 #### 4. **推荐系统** - 根据用户历史行为的嵌入向量,推荐相似内容(如商品、文章)。 --- ### **三、中文场景优化** - **选择中文友好模型**:如 `BGE-zh`、`Ernie-Bot-Embedding`(百度)、DeepSeek可能的中文优化版本。 - **本地部署示例(使用Sentence-BERT)**: ```python from sentence_transformers import SentenceTransformer # 加载中文模型 model = SentenceTransformer('BAAI/bge-base-zh') # 生成向量 embeddings = model.encode(["你好,世界!", "深度学习的嵌入模型"]) print(embeddings.shape) # 输出:(2, 768) ``` --- ### **四、注意事项** 1. **输入长度限制**:例如OpenAI单次请求最多支持8192 tokens。 2. **模型选择**:根据需求平衡精度与速度(如 `text-embedding-3-small` 比 `ada-002` 更快但精度略低)。 3. **成本控制**:云端API按调用次数计费,高频使用建议本地部署。 --- 如果需要更具体的工具或场景指导,可以补充说明需求(如“推荐开源的中文嵌入模型”或“如何部署本地嵌入服务”)!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_喵酱_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值