语义检索-BAAI Embedding(bge-large-zh-v1.5)语义向量模型深度解析[0]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性

语义检索-BAAI Embedding(bge-large-zh-v1.5)语义向量模型深度解析:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性

语义向量模型(Embedding Model)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型的制约问题,近日,智源发布最强开源可商用中英文语义向量模型BGE(BAAI General Embedding),在中英文语义检索精度与整体语义表征能力均超越了社区所有同类模型,如OpenAI 的text embedding 002等。此外,BGE 保持了同等参数量级模型中的最小向量维度,使用成本更低。

  • bge-*-v1.5向量模型,缓解相似度分布问题,提升无指令情况下的检索能力(但检索任务仍建议使用指令)
  • LM-Cocktail, 一种通过模型融合在微调时保持原有模型通用能力的方法

<think>好的,我现在需要回答用户关于如何在本地部署和使用bge-large-zh-v1.5模型的问题。根据用户提供的引用资料,特别是引用[1]和引用[2],我需要整合这些信息并给出清晰的步骤。 首先,引用[1]提到了在autodl上编译embeddings.cpp项目,并将模型转换为ggml格式。这说明用户可能希望了解如何将原始模型转换为适合本地运行的格式。然后,引用[2]提供了模型的下载地址和应用场景,可能需要指导用户如何获取模型文件。 接下来,我需要考虑用户可能的本地环境,比如是否使用Python、是否需要安装特定库,如Hugging Face的transformers和sentence-transformers。此外,用户可能对如何加载模型生成嵌入向量以及转换模型格式感兴趣。 我需要分步骤说明,从环境准备、模型下载、加载模型生成向量到可能的格式转换。同时,要注意用户提到的本地运行main成功,这可能涉及C++项目的编译,需要简要提及相关步骤,但主要焦点应放在Python环境的使用,因为大部分用户可能更熟悉Python。 另外,用户可能需要示例代码来理解如何使用模型,所以提供Python代码片段是必要的。同时,要提醒用户注意依赖项的安装和硬件要求,比如是否需要GPU加速。 最后,根据用户要求生成相关问题,需要围绕模型部署、优化、应用场景等方面提出问题,帮助用户进一步探索。</think>以下是在本地环境中部署和使用$bge-large-zh-v1.5$模型的详细步骤: ### 一、环境准备 1. 安装Python 3.8+环境 2. 安装依赖库: ```bash pip install torch sentence-transformers huggingface_hub ``` ### 二、模型获取 通过Hugging Face Hub下载模型[^2]: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="BAAI/bge-large-zh-v1.5", local_dir="./bge-large-zh") ``` ### 三、基础使用示例 ```python from sentence_transformers import SentenceTransformer # 加载模型 model = SentenceTransformer('./bge-large-zh') # 生成文本嵌入 sentences = ["文本检索效率优化方法", "本地部署语言模型"] embeddings = model.encode(sentences) print(f"嵌入维度:{embeddings.shape}") # 输出:嵌入维度:(2, 1024) ``` ### 四、进阶部署(C++环境) 参考LocalAI项目[^1]需执行: 1. 克隆embeddings.cpp项目 ```bash git clone https://github.com/localai/embeddings.cpp ``` 2. 转换模型为ggml格式 ```bash python convert.py --model /path/to/bge-large-zh --outtype f16 ``` 3. 编译并运行 ```bash make && ./main -m ggml-model.bin -t 4 ``` ### 五、注意事项 1. 显存要求:FP32需要4GB+显存,建议使用FP16量化 2. 中文支持:该模型专门优化了中文文本编码能力 3. 性能优化:使用`pooling_mode='cls'`可获得最佳效果 $$ P = \frac{e^{S \cdot T}}{\sum_{j}e^{S \cdot T_j}} $$ 其中$S$表示查询向量,$T$表示目标向量,该公式用于计算相似度得分[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值