光波的数学描述

1、单色光波场复振幅表达:

U(P)=a(P)exp(ikz)

包含了P点光振动得振幅a(P)和初相位ikz,与时间无关,仅仅是空间位置坐标的函数。

2、球面波:

U(P)=\frac{a_{0}}{r}e^{ikr}

傍轴情况下,发散球面波在xy平面上产生的复振幅分布为:

U(P)=\frac{a_{0}}{r}e^{ikr}\approx \frac{a_{0}}{z}exp(ik(z+\frac{(x-x_{0})^{2}+(y-y_{0})^{2}}{2z})=\frac{a_{0}}{z}exp(ikz)exp(i\frac{k}{2z}[(x-x_{0})^{2}+(y-y_{0})^{2}])

exp(ikz)常量相位因子;

exp(i\frac{k}{2z}[(x-x_{0})^{2}+(y-y_{0})^{2}])球面波的(二次)位相因子,描述了位相随xy平面坐标的变化。

推导如下:

点光源s(x0,y0,z0),观察点P(x,y,z),r为点光源到观察点的P的距离。

r=[(x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}]^{1/2}

假定点光源位置s(x0,y0,0),r=[(x-x_{0})^{2}+(y-y_{0})^{2}+z^{2}]^{1/2}=z[\frac{x-x_{0})^{2}+(y-y_{0})^{2}}{z^{2}}+1]^{^{\frac{1}{2}}}

二次项展开:\sqrt{1+b}=1+\frac{1}{2}b-\frac{1}{8}b^{2},省去高阶项,所以r=z[\frac{x-x_{0})^{2}+(y-y_{0})^{2}}{z^{2}}+1]^{^{\frac{1}{2}}}=z(1+[\frac{x-x_{0})^{2}+(y-y_{0})^{2}}{2z^{2}}])

当xy平面上只考虑一个对S点张角不大的范围,即傍轴情况下,这时[\frac{x-x_{0})^{2}+(y-y_{0})^{2}}{z^{2}}]^{^{\frac{1}{2}}}<<1

因此发散球面波在xy平面上产生的复振幅分布为U(P)\approx \frac{a_{0}}{z}exp(ik(z+\frac{(x-x_{0})^{2}+(y-y_{0})^{2}}{2z})=\frac{a_{0}}{z}exp(ikz)exp(i\frac{k}{2z}[(x-x_{0})^{2}+(y-y_{0})^{2}]),式中分母上的r已用z近似,由于所考察的区域相对很小,可认为各点光振动的振幅近似相等。但在位相因子中,由于光的波长\lambda极短,所以波矢量k数值很大,以致r的误差对位相值影响很大,所以r的近似式中多取一项。

图1 球面波在xy平面上的等位相线

3、平面波

U(P)=ae^{ikr}=aexp(ik(xcos\alpha +ycos\beta +zcos\gamma )) = aexp(ikzcos\gamma )exp(ik(xcos\alpha +ycos\beta))=Aexp(ik(xcos\alpha +ycos\beta))

其中A = aexp(ikz\sqrt{1-cos^{2}\alpha -cos^{2}\beta } )

复振幅表达式:U(P)= Aexp(i2\pi (f_{x}x+f_{y}y))

exp(ikzcos\gamma )是常量相位因子,不随xy坐标变化(已确定方向传播的平面波,以及所选定的垂直位相因子)。

exp(ikxcos\alpha +ycos\beta )为平面波位相因子,等位相线是一些平行斜线。

f_{x},f_{y}为平面波在x,y方向上的空间频率

平面波空间频率

如下图3所示,假定传播矢量k位于x0z平面的简单情况,即cos\beta =0,图3中画出位相依次相差2\pi的几个波面与xy平面的等位相线,计算可得等位相线间隔X=\frac{\lambda }{cos\alpha },即空间频率f_{x}=\frac{1}{X}=\frac{cos\alpha }{\lambda },单位位周/mm。

传播方向余弦为(cos\alpha ,cos\beta )情况下:

f_{x}=\frac{1}{X}=\frac{cos\alpha }{\lambda },     f_{y}=\frac{1}{Y}=\frac{cos\beta }{\lambda }

图2 平面波在xy平面上的等位相线

图3 传播矢量k位于x0z平面的平面波在xy平面上的空间频率

注:空间频率的概念同样可以描述其他物理量的空间周期分布,但应当严格区别它们截然不同的物理含义。例如,对于非相干照明的平面上的光强分布,也可以通过傅里叶分析利用空间频率来描述,但此时空间频率f_{x},f_{y}不再和单色平面波有关,exp(i2\pi (f_{x}x+f_{y}y))也就不再对应沿某一方向传播的平面波。

4、复振幅分布的空间频谱

利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布U(x,y)进行傅里叶分析:

U(x,y)=\iint_{ }^{}A(f_{x},f_{y})exp(i2\pi (f_{x}x+f_{y}y))df_{x}f_{y}

A(f_{x},f_{y})=\iint_{ }^{}U(x,y)exp(-i2\pi (f_{x}x+f_{y}y))dxdy

其中U(x,y)是单色光场中xy平面上的复振幅分布;

A(f_{x},f_{y})是单色光场中xy平面上复振幅分布的角谱。

结合上述内容,可知复振幅U(x,y)可看作为不同传播方向的单色平面波分量的线性叠加。这些平面波分量的传播方向和频率f_{x},f_{y}相对应,其相对的振幅和常量位相取决于频谱A(f_{x},f_{y}),即复振幅分布的空间频率,因为f_{x}=\frac{1}{X}=\frac{cos\alpha }{\lambda },f_{y}=\frac{1}{Y}=\frac{cos\beta }{\lambda }

引入角谱的概念有助于进一步理解复振幅分解的物理含义:单色光波场中某一平面上的场分布可看作不同传播方向的单色平面波的叠加,在叠加时各平面波成分有自己的振幅和常量位相,他们的值分别取决于角谱的模和幅角。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值