大模型调用笔记

文章讲述了用户在使用Kimi模型时遇到400错误,原因是超过了最大token长度。通过调整`max_tokens`参数并理解其含义,即模型期望的返回token数而非总长度,解决了问题。官方强调了合理设置max_tokens以避免输入参数无效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调kimi的模型的时候,老是报400错误

Error code: 400 - {'error': {'message': 'model max length exceeded, max length:8192', 'type': 'invalid_request_error'}}
messages1=[{'role': 'user', 'content': '问题:我在测试\n是否计算入token'}]

completion = client.chat.completions.create(
    model="moonshot-v1-8k",
    messages=messages1,
    temperature=0.3,
    stream=True,
    max_tokens=8190
)

但是message1很小,在对同事诉苦时鬼使神差设置 max_tokens=700,正常了。

kimi官方回答是:

max_tokensoptional聊天完成时生成的最大 token 数。如果到生成了最大 token 数个结果仍然没有结束,finish reason 会是 "length", 否则会是 "stop"int这个值建议按需给个合理的值,如果不给的话,我们会给一个不错的整数比如 1024。特别要注意的是,这个 max_tokens 是指您期待我们返回的 token 长度,而不是输入 + 输出的总长度。比如对一个 moonshot-v1-8k 模型,它的最大输入 + 输出总长度是 8192,当输入 messages 总长度为 4096 的时候,您最多只能设置为 4096,否则我们服务会返回不合法的输入参数( invalid_request_error ),并拒绝回答。如果您希望获得“输入的精确 token 数”,可以使用下面的“计算 Token” API 使用我们的计算器获得计数

Token

文本生成模型以 Token 为基本单位来处理文本。Token 代表常见的字符序列。例如,单个汉字"夔"可能会被分解为若干 Token 的组合,而像"中国"这样短且常见的短语则可能会使用单个 Token 。大致来说,对于一段通常的中文文本,1 个 Token 大约相当于 1.5-2 个汉字。

需要注意的是,对于我们的文本模型,Input 和 Output 的总和长度不能超过模型的最大上下文长度。

官方都重点标注了,看来有不少人踩坑

<think>嗯,用户想知道大模型能否在普通笔记本电脑上运行,以及相关的解决方案。首先,我需要理解大模型通常指的是像GPT-3、BERT这样的大型语言模型,参数量可能达到数十亿甚至更多。普通笔记本电脑的硬件配置通常有限,比如内存可能只有8GB或16GB,没有高性能的GPU,存储空间也可能不足。 首先,直接运行完整的大模型对硬件要求很高,尤其是显存。比如,一个10B参数的模型,如果用FP32精度,需要大约40GB内存,这显然超过了普通笔记本的能力。那用户可能想知道有没有办法在资源受限的环境下使用这些模型。 接下来,解决方案可能包括模型量化、使用轻量级模型、云计算API、模型剪枝和知识蒸馏等。比如,量化可以将模型参数从32位浮点数转换为8位整数,减少内存占用。但需要确认量化后的模型是否支持在CPU上运行,以及性能损失的情况。 另外,像Hugging Face的Gemma模型可能提供了2B或7B参数的版本,用户需要生成访问token,这可能涉及到引用中的内容[^2]。同时,使用Langchain处理文档拆分和嵌入存储,可能引用到[^4]和[^5]的内容,虽然这些更多是关于文档处理的,但可能用户的应用场景涉及本地处理后的数据与模型的结合。 还要考虑内存和存储的限制,可能需要使用外接存储或优化存储方式。此外,模型并行化和分块加载可能帮助在有限内存下运行模型,但需要代码示例,比如使用transformers库的AutoModel类并设置低内存参数。 用户可能还关心实际应用中的失败处理,比如引用[^3]提到的设计容错,但在本地运行大模型时,可能需要简化这方面的考虑,或者确保代码有基本的错误处理。 最后,需要总结可能的解决方案,并给出相关的问题,帮助用户进一步探索。比如,如何优化模型、本地运行的硬件最低要求、量化技术的副作用等。</think>### 大模型在普通笔记本电脑上运行的可行性及解决方案 #### 1. **硬件与性能限制** - **显存与内存**:大模型(如10B+参数)通常需要数十GB显存,普通笔记本的GPU(如集成显卡)显存不足,内存(通常8-16GB)也难以支撑全量加载[^1]。 - **计算能力**:大模型的矩阵运算需要高性能GPU加速,普通笔记本的CPU/GPU难以满足实时推理需求[^2]。 #### 2. **可行解决方案** ##### (1) **模型轻量化** - **量化(Quantization)**:将模型参数从32位浮点(FP32)压缩为8位整数(INT8),内存占用减少至1/4。例如使用Hugging Face的`bitsandbytes`库: ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("gpt2", load_in_8bit=True) ``` 此方法需支持量化的模型(如LLAMA、Gemma)。 - **小型模型选择**:选用参数较少的模型(如Gemma-2B、TinyBERT),牺牲部分性能以适配硬件。 ##### (2) **云计算与边缘计算结合** - **API调用**:通过云端API(如OpenAI、Hugging Face Inference API)发送请求,本地仅处理输入输出。示例: ```python import requests response = requests.post("https://api-inference.huggingface.co/models/gpt2", headers={"Authorization: Bearer YOUR_TOKEN"}, json={"inputs": "Hello!"}) ``` 需按引用[^2]生成访问Token并管理网络延迟。 ##### (3) **本地优化技术** - **模型分块加载**:使用`accelerate`库分阶段加载模型至内存: ```python from accelerate import load_checkpoint_and_dispatch model = load_checkpoint_and_dispatch("model_dir", device_map="auto") ``` - **混合精度训练/推理**:通过FP16混合精度减少计算开销(需NVIDIA GPU支持)。 #### 3. **实践案例** - **Langchain + Elasticsearch本地化方案**:如引用所述,将文档拆分为段落并存储为向量,本地仅运行轻量检索和摘要生成,大模型推理通过API调用实现。 - **使用Colab/Kaggle免费资源**:借助免费云环境临时运行模型,下载中间结果至本地分析。 #### 4. **最低硬件建议** | 模型规模 | 内存需求 | 存储需求 | 可行方案 | |----------|----------|----------|----------| | <2B参数 | ≥8GB | ≥10GB | 量化+CPU推理 | | 2B-7B参数| ≥16GB | ≥20GB | 分块加载+混合精度 | | >7B参数 | 不推荐 | - | 必须依赖云端 | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值