1 思想和生物学基础《On Intelligence》
核心思想
大脑使用大量的记忆来创建一个世界模型。您所知道和已经学到的一切都存储在这个模型中。大脑使用这种基于记忆的模型对未来事件进行连续预测。预测未来的能力是智能的关键。
1.1 人类大脑(The Human Brain)
参考博客
1.2 记忆(Memory)
参考博客
1.3 一种新的智能框架(A New Framework of Intelligence)
1.4 皮质是如何运作的(How the Cortex Works)
参考
2 算法
2.1 分层时序记忆模型HTM
主要在(Hawkins和Ahmad, 2016)得到具体论述
摘要
锥体神经元代表新皮质中的大部分兴奋性神经元。每个锥体神经元接收来自数千个分离到树突分支上的兴奋性突触的输入。树突本身被分隔成顶端,基底和近端整合区域,其具有不同的特性。金字塔神经元如何整合来自数千个突触的输入,不同的树突在这种整合中起什么作用,以及这在皮质组织中起什么样的网络行为,这是一个谜。先前已经提出树突的非线性特性使皮质神经元能够识别多个独立的模式。在本文中,我们以多种方式扩展了这个想法。首先,我们表明,即使在存在大量噪声和模式变化的情况下,在活动树突上分离的具有数千个突触的神经元也能识别数百种独立的细胞活动模式。然后,我们提出一种神经元模型,其中在近端树突上检测到的模式导致动作电位,定义神经元的经典感受野,并且在基底和顶端树突上检测到的模式通过稍微去极化神经元而不产生动作电位而起到预测作用。通过这种机制,神经元可以在数百个独立的环境中预测其激活。然后,我们提出了一个基于神经元的网络模型,这些模型具有学习基于时间的序列的特性。该网络依赖于快速局部抑制来优先激活略微去极化的神经元。通过仿真,我们表明,只要网络使用稀疏的蜂窝激活分布式代码,网络就可以很好地扩展并在很多参数范围内运行。我们将新网络模型的属性与其他几种神经网络模型进行对比,以说明每种模型的相对能力。我们得出结论,具有数千个突触,活跃树突和多个积分区的锥体神经元创建了强鲁棒而强大的序列记忆。鉴于整个新皮层中兴奋性神经元的普遍性和相似性以及序列记忆在推理和行为中的重要性,我们提出这种形式的序列记忆可能是新皮质组织的普遍特性。
讨论
我们提出了一个模型锥体神经元,它与大多数人工神经网络中使用的模型神经元大不相同。 模型神经元的关键特征是其使用活动树突和多个突触整合区(近端,基底和顶端)。 活跃的树突允许神经元可靠地识别大量细胞群中的数百个独立模式。 突触整合区发挥功能上独特的作用,使神经元能够预测细胞活动中的转换和序列。 在该模型中,仅近端突触直接导致动作电位,在基底和顶端树突上检测到的模式使细胞去极化,代表预测。
我们发现这些神经元的网络与快速局部抑制相结合,可以学习数据流中的序列。 基底突触检测预测下一个前馈输入的上下文模式。 顶端突触检测预测整个序列的反馈模式。 神经元和网络的操作依赖于稀疏的神经活动。 序列记忆模型连续学习,使用可变量的时间上下文进行预测,可以进行多个同时预测,仅使用本地学习规则,并且对网络元素,噪声和模式变化的失败具有鲁棒性。
已经提出具有活性树突的神经元可以用多层感知器等效地建模(Poirazi等人,2003)。因此,活性树突的功能和理论益处尚不清楚。本文中描述的序列记忆模型通过为不同的突触整合区域分配独特的角色来提出这样的益处。例如,我们的模型锥体神经元仅通过在近端突触上检测到的模式直接激活,而对于在基底和顶端树突上检测到的模式,其保持更持久的亚阈值去极化。而且,网络的抑制作用不同地适用于不同的突触整合区。最后,无监督学习规则是不同的,并且根据集成区域在不同的时间尺度上操作。虽然可以想象创建包含所有这些操作的标准感知器类神经元的电路,但我们建议使用包含活动树突和独特积分区的神经元模型是更优雅和简约的方法。它也更密切地反映了潜在的生物学。
前人做过的工作
将我们提出的生物序列记忆机制与机器学习领域中使用的其他序列记忆技术进行比较是有益的。最常见的技术是隐马尔可夫模型(HMMs)(Rabiner和Juang,1986)。 HMM被广泛应用,特别是在语音识别中。基本HMM是一阶模型,其精度类似于图6A中所示的一阶模型。 HMM的变化可以通过手动编码高阶状态来对受限制的高阶序列进行建模。时间延迟神经网络(TDNN)(Waibel,1989)允许前馈神经网络通过明确地结合延迟输入来处理有限的高阶序列子集。最近,循环神经网络,特别是长期短期记忆(LSTM)(Hochreiter和Schmidhuber,1997),已经变得流行,通常优于HMM和TDNN。与HTM网络不同,HMM,TDNN和LSTM都不会尝试对生物进行任何细节建模;因此,它们对神经元或新皮层功能的了解很少。 HTM模型相对于这两种技术的主要功能优势在于①其连续学习的能力,其②卓越的稳健性以及③进行多个同时预测的能力。更详细的比较可以在S1表和(Cui et al.,2015年)中找到。
有许多相关的生物学动机序列记忆模型。已经在时间丘脑皮层结合和40Hz振荡的背景下讨论了锥体细胞中的重合检测(Llinás等,1994)。许多论文在序列学习的背景下研究了尖峰神经元模型(Maass,1997; Deneve,2008; Ghosh-Dastidar和Adeli,2009; Jahnke等,2015)。这些模型比机器学习文献中使用的神经元模型更具生物物理学特征。它们显示了尖峰 - 时间依赖性可塑性(STDP)如何导致细胞对特定的突触前尖峰序列以及每个尖峰之间的特定时间延迟做出响应(Ruf和Schmitt,1997; Rao和Sejnowski,2000;Gütig和Sompolinsky,2006 Memmesheimer等,2014) 表明,可以学习和重放许多精确定时的序列,应用于对鸣禽丰富的声音输出进行建模。这些模型通常仅限于马尔可夫(非高阶)序列,并未应用于复杂的现实世界任务。
一般来说,尖峰神经元模型的细节水平低于本文提出的HTM模型。它们明确地模拟突触后电位的积分时间,并且相应的时间延迟通常是亚毫秒到几毫秒。它们通常还处理神经元上非常小的突触子集,并且不明确地模拟非线性活动树突或多个突触整合区域(但参见Legenstein和Maass,2011)。我们工作的重点是规模更大。本文介绍的工作模拟神经元具有全套突触,活动树突和多个突触整合区。网络包含以列和层排列的数万个神经元。得到的模型是计算复杂的序列记忆,可以应用于现实世界的问题(Cui等,2015)。本文提出的HTM模型的一个限制是它不处理序列的特定时序。因此,未来研究的一个有趣方向是连接这两个级别的建模,即,创建在完整的细胞层水平上操作的生物物理详细模型。 Billaudelle和Ahmad,2015报告了一些进展,但在这方面还有很多工作要做。
网络容量和泛化
过去在理解具有线性和非线性神经元和计算元素的系统的能力方面存在重要的工作(Cover,1965; Vapnik等,1994),以及它们相应的错误率(Haussler,1988,1990)。 稀疏神经系统已经在Kanerva(1988),Olshausen和Field(1997)以及最近的工作如Jahnke等人(2015年)的研究中进行了研究。 迄今为止的文献尚未包括具有与皮层神经元相对应的参数的稀疏表示的错误率的完整表征。 在本文中,我们扩展了以前的工作,以表明可以可靠地识别高维稀疏模式,同时需要少量的突触来启动活动树突上的NMDA尖峰。
之前已经研究过各种形式的序列记忆的能力(Sompolinsky和Kanter,1986;Riedel等,1988; Leibold和Kempter,2006)。在我们的模型中,直接获得序列容量的估计。虽然我们将网络模型称为“序列存储器”,但它实际上是转换的记忆。序列长度或存储序列数量没有表示或概念。网络只学习输入之间的转换。因此,网络的容量是通过给定网络可以存储多少转换来衡量的。这可以计算为单个神经元的预期工作循环(每列/每个细胞稀疏度的细胞)乘以每个神经元可以在其基底树突上识别的模式数量的乘积。例如,一个网络中有2%的列是活动的,每列有32个单元格,每个单元格在其基础树突上识别200个模式,可以存储大约320,000个转换((32 / 0.02)* 200)。容量与每列细胞数和每个神经元基底突触识别的模式数呈线性关系。
我们的模型能够表示复杂的高阶(非马尔可夫)序列。 该模型可以自动学习非常远程的时间依赖性。 因此,重要的容量度量是特定输入可以在不同的时间上下文中出现多少次而没有混淆。 这类似于特定音乐片段在没有混淆的情况下出现在旋律中的次数,或者特定单词可以在不同句子中记忆多少次。 如果迷你列具有32个单元,则并不意味着特定模式只能具有32个不同的表示。 例如,如果我们假设每个输入有40个活动列,每列32个单元,每列有一个活动单元,那么每个输入模式有3240种可能的表示,实际上是无限数。 因此,实际限制不是代表性的,而是基于记忆的。 容量取决于可以使用特定稀疏列集合学习的转换次数。
到目前为止,我们只讨论了蜂窝层,其中网络中的所有小区都可能以相同的可能性连接到所有其他小区。 这适用于小型网络,但不适用于大型网络。 在新皮层中,众所周知大多数区域具有拓扑组织。 例如,区域V1中的单元仅从视网膜的一小部分接收前馈输入,并且仅从V1的局部区域接收横向输入。 可以通过以二维阵列排列列并使用以神经元为中心的2D概率分布为每个树突选择潜在的突触来以这种方式配置HTM网络。 拓扑组织的网络可以任意大。
学习算法的一个关键考虑因素是泛化问题,或者强有力地处理新模式的能力。 我们已经概述的序列记忆机制通过在稀疏模式的流中形成活跃神经元的小样本的突触来学习。 稀疏表示的属性自然允许这样的系统概括。 两个随机选择的稀疏模式将具有非常小的重叠。 即使是小的重叠(例如20%)也是非常重要的,并且暗示表示具有显着的语义含义。 树突阈值低于每个片段上的实际突触数,因此片段将识别新颖但语义相关的模式相似。 该系统将看到不同序列之间的相似性,并基于类比进行新的预测。
2.2 利用HTM结合位置信息识别对象
主要在(J. Hawkins, S. Ahmad & Yuwei Cui 2017)中得到具体论述
摘要
皮层区域被组织成柱状和层状。各层之间的连接主要垂直于表面,表明是柱状的功能组织。有些层具有长期的兴奋性横向连接,表明柱之间存在相互作用。所有地区都存在类似的连接模式,但它们的确切作用仍是一个谜。在本文中,我们提出了一个由列和层组成的网络模型来进行鲁棒的对象学习和识别。每一列都集成了它随时间变化的输入,以学习观察对象的完整预测模型。跨列的兴奋性横向连接允许网络根据相邻列的部分知识更快地推断对象。因为列整合了时间和空间上的输入,所以网络学习复杂对象的模型,这些模型远远超出了单个细胞的接受域。我们的网络模型为皮层列引入了一个新的特征。我们建议在每一列的亚颗粒层中计算相对于被感知对象的位置的表示。定位信号作为网络的输入提供,并与感知数据相结合。我们的模型包含两个层和一个或多个列。仿真表明,使用Hebbian-like学习规则,小型单列网络可以学习识别数百个对象,每个对象包含数十个特征。多列网络识别对象时,感觉感受器的活动明显减少。考虑到柱状和层状连接模式在大脑皮层中无处不在,我们认为柱状和层状连接模式比之前假设的具有更强大的识别和建模能力。
2.3 智力和皮层功能的框架
主要在(J. Hawkins et al 2019)中得到具体论述
摘要
新皮层是如何工作的是一个谜。在本文中,我们提出了一个新的框架来理解它的功能。网格细胞是内嗅皮层中的神经元,代表动物在其环境中的位置。最近的证据表明,网格细胞样的神经元也可能存在于大脑皮层。我们认为网格细胞存在于整个新皮层,每个区域和每个皮层柱。他们定义了一个基于位置的框架来描述大脑皮层的功能。虽然内嗅皮层中的网格细胞代表一件事物的位置,即身体相对于环境的位置,但我们认为皮层网格细胞同时代表许多事物的位置。躯体感觉皮层的皮质柱跟踪触觉特征相对于被触摸物体的位置,视觉皮层的皮质柱跟踪视觉特征相对于被观看物体的位置。我们认为,内嗅皮层和海马体中为学习环境结构而进化的机制现在被新皮层用来学习物体的结构。在每个皮层柱中都有一个位置的表示,这为新皮层如何表示物体的构成和行为提供了机制。这就导致了这样一种假设,即新皮质的每个部分都学习了对象的完整模型,并且在整个新皮质中分布着许多对象的模型。所有皮层区域所观察到的电路的相似性,有力地证明了,即使是高层次的认知任务,也可以在基于位置的框架中学习和表现出来。