An Optimization-Based Approach to Understanding Sensory Systems 解读

文章 An Optimization-Based Approach to Understanding Sensory Systems
来自《The Cognitive Neurosciences》
作者:Daniel Yamins

主要讲了人脑腹侧视觉流(Ventral Visual Pathway)的过程以及如何采用量化的网络模型来模拟这一过程
在这里插入图片描述
作者认为腹侧视觉流是产生强鲁邦的对象识别的重要路径[1, 4-7],他总结了腹侧视觉流的两个特征:

  1. 层次性,视觉信息以级联的方式从低级皮质区域传递到高级皮质区域
  2. retinotopic,意思是由相同的局部接受野执行结构上相似的功能,随着层次性的推进空间的分辨率逐渐降低(我对此存疑)

有一个现象,两张人像可能在像素空间上非常接近,但是人却能非常肯定的认为这就是两个人,这说明视觉系统将原始输入空间中高度相近的特征维度在输出空间上进行分离(untangle)。
图c中,LN代表Linar-Nonlinear。文章中解释了为什么需要级联。首先,总体的“刺激-神经元”的变换本质上是将高维空间中“缠”在一起,这种“纠缠”是非线性的,对此的逆变换也应该是非线性的。然后简单的单层操作例如加权和,带阈值的非线性以及局部归一化是有局限的。
LN的形式为
T i = N i ∘ L i T_i = N_i\circ L_i Ti=NiLi
L i L_i Li是线性变换,作者认为线性变化的原因是神经元的操作非常适合用线性变换来表示,例如加和所有输入树突的突触强度。作者认为线性变化的过程代表从皮质下结构到V1阶段的过程
常见的线性过程:

  • 维度扩增阶段——线性过程
  • 降维聚合阶段——池化过程
  • range-centering component?——归一化过程
    作者认为HCNN(Hierarchical CNN)的每一层代表人脑视觉系统的不同阶段,例如视网膜神经节(retinal ganglion), 外侧膝状体(lateral geniculate nu),V1, V2, V4, PIT(Posterior Inferior temporal),AIT(Anterior Inferior Temporal)等

上图(a)中更加完整的过程如下所示
s t i m u l u s . . . → T 1 n 1 → T 2 n 2 . . . → T t o p n t o p → D b e h a v i o r stimulus...\xrightarrow{T_1} \bold{n}_{1} \xrightarrow{T_2} \bold{n}_{2} ...\xrightarrow{T_{top}} \bold{n}_{top}\xrightarrow{D} behavior stimulus...T1 n1T2 n2...Ttop ntopD behavior

D表示Decoder,可以有多个Decoder,也就是如下图
在这里插入图片描述

作者在最后讨论了级联的模型和香农的信息论的关系。因为按照信息论的观点,随着级联的步数增加,模型只会损失越来越多的信息。但是作者认为人脑进化的目的是为了提取“行为相关的信息”,例如通过人脸识别这个人的身份,而不是关注于像素尺度的信息(所以他的意思还是HCNN很有道理)

量化表示HCNN和腹侧视觉流的关系

Yamin等人做了一些实验,证明HCNN预测腹侧视觉流的神经元反应的能力和它执行一些具有挑战性的对象识别的能力呈现强相关,如下图所示,图中的蓝色点表示简单的三层HCNN模型,它们或者是用随机的权重或者针对分类任务或者预测IT区域相应做了优化。黑点代表已有的传统模型。红点代表深度HCNN。Category Ideal Observer?
在这里插入图片描述
这张图描述了不同模型的不同位置预测腹侧视觉皮质的特定区域的能力,从(a)中可以看到HCNN顶层最完美的预测了猕猴IT的相应。从(b)中可以看到HCNN的第五层预测了V4的相应。从©中可以看到在V1-V3的过程中HCNN的最初几层预测的比较好
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
微分进化(Differential Evolution,DE)是一种实际的全局优化方法。它是一种演化算法,源于遗传算法和进化策略。与其他优化算法相比,DE具有以下几个特点。 首先,DE具有较强的全局搜索能力。它使用一种个体的差异来引导搜索过程,通过对个体进行随机的变异和交叉操作,使搜索过程能够逃离局部最优解,进而实现对全局最优解的搜索。 其次,DE的算法过程简单易实现。DE算法的基本操作包括选择、变异和交叉,其中变异和交叉操作是DE的核心。变异通过引入随机扰动来产生新的解向量,而交叉则通过比较两个解向量的差异来生成新的解向量。这种简单直观的操作使得DE具有较低的计算复杂性和较高的实用性。 此外,DE还能够处理高维、非线性和非光滑的优化问题。由于DE采用人工进化的思想,不需要对优化问题进行特定的假设和约束,因此能够适应不同类型的问题。它可以很好地解决实际问题中存在的多个局部最优解和约束条件的情况,具有较强的自适应性和鲁棒性。 最后,DE在实际应用中具有广泛的适用性。DE已经成功应用于多个领域,如工程设计、信号处理、金融建模等。通过结合DE和其他优化算法,可以提高优化过程的效率和准确性,为实际问题提供有效的解决方案。 综上所述,微分进化是一种实用的全局优化方法,具有全局搜索能力强、算法过程简单、能处理复杂问题和广泛适用等特点。随着计算能力的不断提高和应用需求的增加,DE将在更多实际问题中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值