【代码分析】图小样本异常检测方法:GDN:Few-shot Network Anomaly Detection via Cross-network Meta-learning

这篇博客探讨了GDN(Few-shot Network Anomaly Detection via Cross-network Meta-learning)方法,重点分析了abnormality valuator的作用和SGC模型的简化实现。文中提到,abnormality valuator通过设置SGC的输出特征数为1来实现,而SGC在预计算后只需一个线性层。此外,博客还介绍了数据加载、采样和划分的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、关于 abnormality valuator

abnormality valuator 的作用是将嵌入映射为一个标量分数,在代码中没有作为一个单独的模块,而是在调用模型时out_feature设置为1来实现:model = SGC(target_feature.shape[1], 1).to(device)

   def<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值