高数复习基础:数列极限

在这里插入图片描述

定义求解

主要就是 ε − N \varepsilon - N εN语言

如证 lim ⁡ n → ∞ q n = 0 \lim_{n\to\infty}q^n=0 limnqn=0,其中 q q q为常数且 ∣ q ∣ < 1 |q|<1 q<1

解:

按定义证起手都是 ∣ a n − A ∣ < ε |a_n-A|<\varepsilon anA<ε

欲证 ∣ q n − 0 ∣ = ∣ q n ∣ < ε |q^n-0|=|q^n|<\varepsilon qn0∣=qn<ε,对于有幂的考虑使用对数

即证 n ln ⁡ ∣ q ∣ < ln ⁡ ε n\ln|q|<\ln \varepsilon nlnq<lnε

因为左侧负,故取 ε ∈ ( 0 , 1 ) \varepsilon \in (0,1) ε(0,1),这样 ln ⁡ ε \ln \varepsilon lnε也为负

移项 n > ln ⁡ ε ln ⁡ ∣ q ∣ n>\frac{\ln \varepsilon}{\ln |q|} n>lnqlnε

N = [ ln ⁡ ε ln ⁡ ∣ q ∣ ] + 1 N=[\frac{\ln \varepsilon}{\ln |q|}]+1 N=[lnqlnε]+1

则当 n > N n>N n>N时必有 n > ln ⁡ ε ln ⁡ ∣ q ∣ n>\frac{\ln \varepsilon}{\ln |q|} n>lnqlnε

∣ q n − 0 ∣ < ε |q^n-0|<\varepsilon qn0∣<ε,故 lim ⁡ n → ∞ q n = 0 \lim_{n\to\infty}q^n=0 limnqn=0得证

收敛数列的性质

  • (唯一性)极限存在必唯一
  • (有界性)极限存在数列必有界
  • (保号性)数列 { a n } \{a_n\} {an}极限 a > 0 a>0 a>0(或 a < 0 a<0 a<0),则存在正整数 N N N,当 n > N n>N n>N时有 a n > 0 a_n>0 an>0(或 a n < 0 a_n<0 an<0

不等关系

不等关系主要还是靠不等式(放缩)

证明若 lim ⁡ n → ∞ \lim_{n\to \infty} limn,则 lim ⁡ n → ∞ ∣ a n ∣ = ∣ A ∣ \lim_{n \to \infty}|a_n|=|A| limnan=A

解:

由题意有 ∀ ε > 0 , ∃ N > 0 , n > N , 有 ∣ a n − A ∣ < ε \forall \varepsilon > 0, \exist N>0,n>N,\text{有}|a_n-A|<\varepsilon ε>0,N>0,n>N,anA<ε

由不等式 ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\le|a-b| ∣∣ab∣∣ab

∣ ∣ a n ∣ − ∣ A ∣ ∣ ≤ ∣ a n − A ∣ < ε ||a_n|-|A||\le|a_n-A|<\varepsilon ∣∣anA∣∣anA<ε

在这里插入图片描述

数列收敛性和子列收敛性

若数列 { a n } \{a_n\} {an}收敛则其子列 { a n } \{a_n\} {an}也收敛,且有:

lim ⁡ k → ∞ a k n = lim ⁡ n → ∞ a n \lim_{k \to \infty}a_{kn}=\lim_{n\to \infty}a_n klimakn=nliman

这个是能反过来说的:若存在某子列 { a n } \{a_n\} {an}发散或者两个子列收敛但收敛值不同,则原数列发散

某些情况要研究子列构成父数列全体,如果子列是2k,那就得有两个:2k和2k+1,如果是3k,就得三个:3k、3k+1、3k+2


证明 { n ( − 1 ) n } \{n^{(-1)^n}\} {n(1)n}极限不存在

解:

n n n为奇偶两种情况,为奇和为偶两种情况收敛极限的不一样,因此原数列无极限

其他

不知道该起啥子标题

lim ⁡ u → 1 u v = 1 ∞ e lim ⁡ v ln ⁡ u = e v ( u − 1 ) \lim_{u \to 1} u^v\mathop{{=}}\limits^{{1^\infty}}e^{\lim v \ln u}=e^{v(u-1)} u1limuv=1elimvlnu=ev(u1)

成立的前提是式子形式为 1 ∞ 1^\infty 1,此时显然 u → 1 u \to 1 u1

关于这个式子的来历,主要是因为 ln ⁡ u = ln ⁡ ( 1 + u − 1 ) \ln u=\ln (1+u-1) lnu=ln(1+u1),并且在 x → 0 x \to 0 x0时根据等价无穷小有 x ∼ ln ⁡ ( 1 + x ) x\sim \ln (1+x) xln(1+x)。由于 u → 1 u \to 1 u1,故 u − 1 → 0 u-1\to 0 u10,可以套用上述代换,可以得到 ln ⁡ u = ln ⁡ ( 1 + u − 1 ) = x − 1 \ln u=\ln (1+u-1)=x-1 lnu=ln(1+u1)=x1


结论:当 q q q常数 ∣ q ∣ < 1 |q|<1 q<1时, S = lim ⁡ n → ∞ S n = a 1 1 − q S=\lim_{n \to \infty}S_n=\frac{a_1}{1-q} S=limnSn=1qa1

强调是常数,因为如果不是,看下题:

q = 1 − 1 n q=1-\frac1n q=1n1时的 lim ⁡ n → ∞ q n \lim_{n \to \infty}q^n limnqn的极限是?

解:

能够发现 n → ∞ n\to \infty n时符合 1 ∞ 1^\infty 1的形式(见上面的结论)

lim ⁡ n → ∞ q n = lim ⁡ n → ∞ = e lim ⁡ n → ∞ n ( − 1 n ) = e − 1 \lim_{n \to \infty}q^n=\lim_{n \to \infty}=e^{\lim_{n \to \infty}n(-\frac1n)}=e^{-1} nlimqn=nlim=elimnn(n1)=e1

它压根不等于0


lim ⁡ n → ∞ a n = 0 ⇔ lim ⁡ n → ∞ ∣ a n ∣ = 0 \lim_{n \to \infty}a_n=0 \Leftrightarrow \lim_{n \to \infty}|a_n|=0 nliman=0nliman=0

这样的话欲证 a n → 0 a_n\to 0 an0就可以转化为证 ∣ a n ∣ → 0 |a_n|\to 0 an0,此时若使用夹逼定理,则已经知道了 0 ≤ ∣ a n ∣ ≤ . . . 0 \le |a_n| \le... 0an...,完成了一半的证明,只需再证右侧

推导依靠下面的不等式:

∣ ∣ a n ∣ − A ∣ ||a_n|-A| ∣∣anA

关于夹逼定理

形式是 y n ≤ x n ≤ z n y_n\le x_n \le z_n ynxnzn

对于两个不等号,是否有等于不要紧


在这里插入图片描述

递推式优先考虑单调有界准则

设数列 { a n } \{a_n\} {an}满足 a 1 = a ( a > 0 ) , a n + 1 = 1 2 ( a n + 2 a n ) a_1=a(a>0),a_{n+1}=\frac12(a_n+\frac{2}{a_n}) a1=a(a>0),an+1=21(an+an2),证明极限存在并求值

解:

证有下界:

利用不等式 a + b > 2 a b a+b>2\sqrt{ab} a+b>2ab 代换递推式右侧得 a n + 1 = 1 2 ( a n + 2 a n ) = 2 a_{n+1}=\frac12(a_n+\frac{2}{a_n})=\sqrt2 an+1=21(an+an2)=2 ,这就是下界

注意不等式的前提是 a , b > 0 a,b>0 a,b>0,并且可以根据 a 1 = a > 0 a_1=a>0 a1=a>0推知 a n > 0 a_n>0 an>0,对于了不等式的前提

证单调:

a n + 1 − a n = 1 2 ( a n + 2 a n ) − a n = 2 − a n 2 2 a n ≤ 0 a_{n+1}-a_n=\frac12(a_n+\frac{2}{a_n})-a_n=\frac{2-a_n^2}{2a_n} \le 0 an+1an=21(an+an2)an=2an2an20,故单调递减

最后求解:

带入A解递推式即可: A = 1 2 ( A + 2 A ) A=\frac12(A+\frac2A) A=21(A+A2),再结合保号性知 A = 2 A=\sqrt2 A=2

无界但不无穷大

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值