大学数学汇总

基础

三角公式

三角函数之和差化积与积化和差公式

函数单调性

  • 定义(作差、作商
  • 导数
  • 复合函数的性质
    • 增+增=增
    • 全正项情况下,增×增=增

连续性

  • 连续一定可积,但可积函数不一定连续
  • 无论什么样的函数,只要存在原函数,则原函数一定是可导函数,因此一定是连续的。

原函数

  • 可积代表能算出面积
  • 连续函数必有原函数(连续函数必可积)
  • 有原函数的未必连续
  • 可积不一定存在原函数
  • 原函数存在不一定可积(不可积的也可以有原函数)
  • 存在第一类间断点(左右极限都存在的间断点)的函数没有原函数
  • 变上限积分不是原函数(只有在 f ( x ) f(x) f(x)连续的时候变上限积分才是原函数)

可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。
原函数存在的充分条件:连续。

由达布定理知原函数的导函数不一定连续但必有介值性,而有第一类间断点的函数在间断点附近必存在一个邻域不满足介值性,故其在这个邻域中没有原函数,自然在整个区间上没有原函数。

周期性

f ( x + T ) = f ( x ) ⇒ f ( ω ( x + T ω ) ) = f ( ω x + T ) = f ( ω x ) f(x+T)=f(x) \Rightarrow f(\omega(x+\frac T\omega)) =f(\omega x+T)=f(\omega x) f(x+T)=f(x)f(ω(x+ωT))=f(ωx+T)=f(ωx)

  • 函数是周期函数求导之后是周期函数,反之不成立(如 f ( x ) = 1 f(x)=1 f(x)=1但原函数 F ( x ) = x F(x)=x F(x)=x不是周期函数)

两个数比大小

转化成一个函数上的两个点。

若是 a b a^b ab b a b^a ba就取对数然后同除 a b ab ab

渐近线

有时候 x → + ∞ x\to +\infty x+ x → − ∞ x\to -\infty x是同一个值,那时候渐近线是一条不是两条

重要极限

lim ⁡ x → 0 [ 1 + 1 − cos ⁡ f ( x ) sin ⁡ x ] 1 x = e \lim_{x\to 0}[1+\frac{1-\cos f(x)}{\sin x}]^{\frac 1x}=e x0lim[1+sinx1cosf(x)]x1=e

因为 lim ⁡ □ → 0 [ 1 + □ ] 1 □ = e \lim_{□\to 0}[1+□]^{\frac 1□}=e 0lim[1+]1=e

那就得有 lim ⁡ □ → 0 □ □ = 1 \lim_{□\to 0}\frac □□=1 lim0=1,对于上述例子,则有

lim ⁡ x → 0 1 − cos ⁡ f ( x ) x sin ⁡ x = 1 \lim_{x\to 0}\frac{1-\cos f(x)}{x\sin x}=1 x0limxsinx1cosf(x)=1

一元函数微分学

函数值与一阶导数联系就用拉格朗日中值定理,与高阶导数联系起来就用泰勒展开。

判断连续

主要看分段点,左极限等于右极限等于该点值就连续。
可导必连续

判断可导

该点连续,左导=右导,使用定义法

导数转极限

例如给出 lim ⁡ x → 0 f ( x ) 1 − cos ⁡ x = 2 \lim_{x\to 0}\frac{f(x)}{1-\cos x}=2 x0lim1cosxf(x)=2

则可有

lim ⁡ x → 0 f ( x ) − f ( 0 ) x ⋅ x 1 − cos ⁡ x = f ′ ( 0 ) ⋅ lim ⁡ x → 0 x 1 − cos ⁡ x \lim_{x\to 0}\frac{f(x)-f(0)}{x}·\frac{x}{1-\cos x}=f'(0)·\lim_{x\to 0}\frac{x}{1-\cos x} x0limxf(x)f(0)1cosxx=f(0)x0lim1cosxx

从而转化为一个极限问题

常用不等式

在这里插入图片描述

极限转级数

设函数 f ( x ) f(x) f(x)有连续导数,且 lim ⁡ x → 0 [ sin ⁡ x x 2 + f ( x ) x ] = 2 \lim_{x \to 0}[\frac{\sin x}{x^2}+\frac{f(x)}x]=2 limx0[x2sinx+xf(x)]=2,则 f ( x ) f(x) f(x)的一阶麦克劳林展开

中值定理

中值定理证明题

三类题

  • $$

方法

  • 转化为 f ( x ) = 0 f(x)=0 f(x)=0的找零点问题,用零点定理
  • 含高阶导数的用拉格朗日余项的泰勒

一元函数积分学

三大计算之积分诸法

反常积分判敛

知乎 - 21考研|反常积分判敛3种方法,无穷限反常积分和瑕积分统统教会你

知乎 - 高数·强化·反常积分的判敛与计算
先看有没有瑕点,有瑕点看两侧,单侧发散则整体发散

在这里插入图片描述

多元函数微分学

多元函数微分学

可微

若不可微

  1. 在该点不连续。
  2. 在该点的左右导数不相等。
  3. 在该点的左右极限不存在或不相等。
  4. 在该点处的斜率不存在或为无穷大。
  5. 函数在该点处有角点或断点。
  6. 不可微,并不意味偏导数不存在

可微偏导必存在,可微不一定偏导连续。偏导存在不一定连续,连续不一定偏导存在。偏导数存在且连续才可以推出函数可微

所有方向偏导数都存在才可微(有全微分未必可微,因为那是两个方向偏导存在)

切向量

z = f ( x , y ) z=f(x,y) z=f(x,y)的切向量是 ( f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) , − 1 ) (f_x'(x_0,y_0),f_y'(x_0,y_0),-1) (fx(x0,y0),fy(x0,y0),1)

但是 f ( x ) = { z = f ( x , y ) y = 0 ⇔ f ( x ) = { x = x z = f ( x , 0 ) y = 0 f(x)=\left\{ \begin{matrix} z=f(x,y)\\ y =0 \\ \end{matrix} \right.\Leftrightarrow f(x)=\left\{ \begin{matrix} x = x\\ z=f(x,0)\\ y =0 \\ \end{matrix} \right. f(x)={z=f(x,y)y=0f(x)= x=xz=f(x,0)y=0
实际上的切向量是 ( 1 , 0 , f x ′ ( x , 0 ) ) (1,0,f_x'(x,0)) (1,0,fx(x,0))

如果是两个曲面相交得到曲线的的切向量,那就得看交点处两个平面的切向量叉乘得到

偏导

  • 偏导相等是偏导极限存在且相等
  • 初等函数在其定义区间内是连续的,

全微分

P ( x , y ) P(x,y) P(x,y) Q ( x , y ) Q(x,y) Q(x,y)有连续一阶偏导数且 P ( x , y ) d x + Q ( x , y ) d y P(x,y)dx+Q(x,y)dy P(x,y)dx+Q(x,y)dy是某一函数的全微分,则有 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ

f f f里嵌套 f f f
其实就跟隐函数 F ( x , y , z ) F(x,y,z) F(x,y,z) d z d x \frac {dz}{dx} dxdz是类似的,按公式挨个求就行

曲线到直线的距离

其实就是点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)到直线的距离,但是加了约束条件,约束条件就是曲线的方程

全增量与偏导数的关系

对于全增量 Δ f \Delta f Δf Δ f Δ x \frac{\Delta f}{\Delta x} ΔxΔf是对x的偏导数(从定义式推知)

区域的极值

  • 条件极值
  • 非条件极值

区域极值问题直接包含上述两方面,需要对边界求极值,边界极值都是化为一元函数处理(看导数),分为下述情况(需要分段讨论):

  1. 边界平行坐标轴(如 x x x轴就带 x = x 0 x=x_0 x=x0,然后对 f ( x 0 , y ) f(x_0,y) f(x0,y)求导看趋势)
  2. 边界不平行坐标轴,对把一个参数替换为另一个,即 f ( x , f ( y ) ) f(x,f(y)) f(x,f(y))转换为新的 g ( x ) g(x) g(x)

以上需注意范围

边界内部:

  1. 如果驻点很容易求出则直接求,否则按2处理
  2. 使用拉格朗日乘数法,求出来的点加上边界求出来的点一起比较,寻找出最大值和最小值即是

拉格朗日乘数法

  1. λ \lambda λ(常规反解 λ \lambda λ带入)
  2. 在类圆/椭圆方程分别对三个式子分别同乘 x x x/ y y y/ z z z,以期构造出相同的项(如 x y z xyz xyz)并消去
  3. L ( x , y , λ ) L(x,y,\lambda) L(x,y,λ)具有轮换性(即互换之后 L ( x , y , λ ) L(x,y,\lambda) L(x,y,λ)不变),一般拉格朗日方程组有解 x = y x=y x=y
  4. 判断 λ \lambda λ是否可以等于0:像 1 + λ x = 0 1+\lambda x=0 1+λx=0这种若 λ = 0 \lambda = 0 λ=0原式不成立

方向导数

方向导数是标量(一个数),并且得指明在什么方向下(因为得求方向余弦)

偏导不存在也可以有方向导数

多元函数积分学

二重积分的解题技巧
多元函数积分思路合集
知乎 - 数学技巧篇31:旋转曲面方程的求法

常微分方程

常微分方程的解题思路

级数

常数项级数
函数项级数与幂级数
如何将函数展开成幂级数? - 玩转高等数学的回答 - 知乎
知乎 - 常用Taylor公式(即Maclaurin级数)合集(超全二十六个,收藏前先点赞同,谢谢)

线性代数

[线代]自用大纲

概率论

概率论与数理统计

  • 17
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值