几何随机变量
1 定义
对于独立的重复试验,每次试验成功的概率为
p
,
0
≤
p
≤
1
p,0\le p \le 1
p,0≤p≤1,我们知道
n
n
n次试验成功的次数符合参数为
(
n
,
p
)
(n,p)
(n,p)的二项分布。现在考虑随机变量
X
X
X,
X
X
X表示重复试验直到试验首次成功为止需要的试验次数,则有:
P
{
X
=
n
}
=
p
(
1
−
p
)
n
−
1
n
=
1
,
2
,
⋯
P\{X = n\} = p(1-p)^{n-1} \ \ \ \ \ \ n = 1,2,\cdots
P{X=n}=p(1−p)n−1 n=1,2,⋯
上式的含义为,试验到
n
n
n次才成功的充要条件是试验的前
n
−
1
n-1
n−1次失败,第
n
n
n次试验成功,因为考虑的是独立的试验,因此上式成立。我们来对其求和:
∑
n
=
1
∞
P
{
X
=
n
}
=
p
∑
n
=
1
∞
(
1
−
p
)
n
−
1
=
p
1
−
(
1
−
p
)
=
1
\sum_{n=1}^\infty P\{X = n\} =p \sum_{n=1}^\infty (1-p)^{n-1} = \cfrac{p}{1-(1-p)} = 1
n=1∑∞P{X=n}=pn=1∑∞(1−p)n−1=1−(1−p)p=1
因此求和表明试验最终会成功的概率为1。如果随机变量的概率质量函数由上式给出,则称随机变量为几何随机变量。
2 几何随机变量的期望和方差
根据期望的公式有:
E
[
X
]
=
∑
n
=
1
∞
n
p
(
1
−
p
)
n
−
1
=
∑
n
=
1
∞
(
n
−
1
+
1
)
p
(
1
−
p
)
n
−
1
=
∑
n
=
1
∞
(
n
−
1
)
p
(
1
−
p
)
n
−
1
+
∑
n
=
1
∞
p
(
1
−
p
)
n
−
1
\begin{aligned} E[X]& = \sum_{n=1}^\infty np(1-p)^{n-1}\\ &= \sum_{n=1}^\infty (n - 1+1)p(1-p)^{n-1} \\ &= \sum_{n=1}^\infty (n - 1)p(1-p)^{n-1} +\sum_{n=1}^\infty p(1-p)^{n-1} \end{aligned}
E[X]=n=1∑∞np(1−p)n−1=n=1∑∞(n−1+1)p(1−p)n−1=n=1∑∞(n−1)p(1−p)n−1+n=1∑∞p(1−p)n−1
通过观察上式,我们发现加好右边就是上面的概率和,即为1,同时令
i
=
n
−
1
i = n-1
i=n−1则有
E
[
X
]
=
∑
i
=
0
∞
i
p
(
1
−
p
)
i
+
1
=
(
1
−
p
)
∑
i
=
1
∞
i
p
(
1
−
p
)
i
−
1
+
1
=
(
1
−
p
)
E
[
X
]
+
1
\begin{aligned} E[X] &= \sum_{i=0}^\infty ip(1-p)^i +1 \\ &= (1-p)\sum_{i=1}^\infty ip(1-p)^{i-1} + 1\\ &= (1-p)E[X] +1 \end{aligned}
E[X]=i=0∑∞ip(1−p)i+1=(1−p)i=1∑∞ip(1−p)i−1+1=(1−p)E[X]+1
因此:
E
[
X
]
=
1
p
E[X] = \cfrac{1}{p}
E[X]=p1
计算方差之前还是先来计算
E
[
X
2
]
E[X^2]
E[X2],推导的方法与期望类似:
E
[
X
2
]
=
∑
n
=
1
∞
n
2
p
(
1
−
p
)
n
−
1
=
∑
n
=
1
∞
(
n
−
1
+
1
)
2
p
(
1
−
p
)
n
−
1
=
∑
n
=
1
∞
(
n
−
1
)
2
p
(
1
−
p
)
n
−
1
+
2
∑
n
=
1
∞
(
n
−
1
)
p
(
1
−
p
)
n
−
1
+
∑
n
=
1
∞
p
(
1
−
p
)
n
−
1
=
(
1
−
p
)
E
[
X
2
]
+
2
(
1
−
p
)
E
[
X
]
+
1
\begin{aligned} E[X^2] &= \sum_{n=1}^\infty n^2p(1-p)^{n-1}\\ &=\sum_{n=1}^\infty (n-1+1)^2p(1-p)^{n-1} \\ &= \sum_{n=1}^\infty (n-1)^2p(1-p)^{n-1} + 2\sum_{n=1}^\infty (n-1)p(1-p)^{n-1} + \sum_{n=1}^\infty p(1-p)^{n-1}\\ &=(1-p)E[X^2] + 2(1-p)E[X] + 1 \end{aligned}
E[X2]=n=1∑∞n2p(1−p)n−1=n=1∑∞(n−1+1)2p(1−p)n−1=n=1∑∞(n−1)2p(1−p)n−1+2n=1∑∞(n−1)p(1−p)n−1+n=1∑∞p(1−p)n−1=(1−p)E[X2]+2(1−p)E[X]+1
因此可得
E
[
X
2
]
E[X^2]
E[X2]:
E
[
X
2
]
=
2
−
p
p
2
E[X^2] = \cfrac{2-p}{p^2}
E[X2]=p22−p
方差
V
a
r
(
X
)
Var(X)
Var(X)为:
V
a
r
(
X
)
=
E
[
X
2
]
−
E
[
X
]
2
=
1
−
p
p
2
Var(X) = E[X^2] - E[X]^2 = \cfrac{1-p}{p^2}
Var(X)=E[X2]−E[X]2=p21−p
参考资料:《概率论基础教程》Sheldon M.Ross