概率论——几何随机变量

几何随机变量

1 定义

  对于独立的重复试验,每次试验成功的概率为 p , 0 ≤ p ≤ 1 p,0\le p \le 1 p,0p1,我们知道 n n n次试验成功的次数符合参数为 ( n , p ) (n,p) (n,p)的二项分布。现在考虑随机变量 X X X X X X表示重复试验直到试验首次成功为止需要的试验次数,则有:
P { X = n } = p ( 1 − p ) n − 1        n = 1 , 2 , ⋯ P\{X = n\} = p(1-p)^{n-1} \ \ \ \ \ \ n = 1,2,\cdots P{X=n}=p(1p)n1      n=1,2,
上式的含义为,试验到 n n n次才成功的充要条件是试验的前 n − 1 n-1 n1次失败,第 n n n次试验成功,因为考虑的是独立的试验,因此上式成立。我们来对其求和:
∑ n = 1 ∞ P { X = n } = p ∑ n = 1 ∞ ( 1 − p ) n − 1 = p 1 − ( 1 − p ) = 1 \sum_{n=1}^\infty P\{X = n\} =p \sum_{n=1}^\infty (1-p)^{n-1} = \cfrac{p}{1-(1-p)} = 1 n=1P{X=n}=pn=1(1p)n1=1(1p)p=1
因此求和表明试验最终会成功的概率为1。如果随机变量的概率质量函数由上式给出,则称随机变量为几何随机变量

2 几何随机变量的期望和方差

  根据期望的公式有:
E [ X ] = ∑ n = 1 ∞ n p ( 1 − p ) n − 1 = ∑ n = 1 ∞ ( n − 1 + 1 ) p ( 1 − p ) n − 1 = ∑ n = 1 ∞ ( n − 1 ) p ( 1 − p ) n − 1 + ∑ n = 1 ∞ p ( 1 − p ) n − 1 \begin{aligned} E[X]& = \sum_{n=1}^\infty np(1-p)^{n-1}\\ &= \sum_{n=1}^\infty (n - 1+1)p(1-p)^{n-1} \\ &= \sum_{n=1}^\infty (n - 1)p(1-p)^{n-1} +\sum_{n=1}^\infty p(1-p)^{n-1} \end{aligned} E[X]=n=1np(1p)n1=n=1(n1+1)p(1p)n1=n=1(n1)p(1p)n1+n=1p(1p)n1
通过观察上式,我们发现加好右边就是上面的概率和,即为1,同时令 i = n − 1 i = n-1 i=n1则有
E [ X ] = ∑ i = 0 ∞ i p ( 1 − p ) i + 1 = ( 1 − p ) ∑ i = 1 ∞ i p ( 1 − p ) i − 1 + 1 = ( 1 − p ) E [ X ] + 1 \begin{aligned} E[X] &= \sum_{i=0}^\infty ip(1-p)^i +1 \\ &= (1-p)\sum_{i=1}^\infty ip(1-p)^{i-1} + 1\\ &= (1-p)E[X] +1 \end{aligned} E[X]=i=0ip(1p)i+1=(1p)i=1ip(1p)i1+1=(1p)E[X]+1
因此:
E [ X ] = 1 p E[X] = \cfrac{1}{p} E[X]=p1
计算方差之前还是先来计算 E [ X 2 ] E[X^2] E[X2],推导的方法与期望类似:
E [ X 2 ] = ∑ n = 1 ∞ n 2 p ( 1 − p ) n − 1 = ∑ n = 1 ∞ ( n − 1 + 1 ) 2 p ( 1 − p ) n − 1 = ∑ n = 1 ∞ ( n − 1 ) 2 p ( 1 − p ) n − 1 + 2 ∑ n = 1 ∞ ( n − 1 ) p ( 1 − p ) n − 1 + ∑ n = 1 ∞ p ( 1 − p ) n − 1 = ( 1 − p ) E [ X 2 ] + 2 ( 1 − p ) E [ X ] + 1 \begin{aligned} E[X^2] &= \sum_{n=1}^\infty n^2p(1-p)^{n-1}\\ &=\sum_{n=1}^\infty (n-1+1)^2p(1-p)^{n-1} \\ &= \sum_{n=1}^\infty (n-1)^2p(1-p)^{n-1} + 2\sum_{n=1}^\infty (n-1)p(1-p)^{n-1} + \sum_{n=1}^\infty p(1-p)^{n-1}\\ &=(1-p)E[X^2] + 2(1-p)E[X] + 1 \end{aligned} E[X2]=n=1n2p(1p)n1=n=1(n1+1)2p(1p)n1=n=1(n1)2p(1p)n1+2n=1(n1)p(1p)n1+n=1p(1p)n1=(1p)E[X2]+2(1p)E[X]+1
因此可得 E [ X 2 ] E[X^2] E[X2]
E [ X 2 ] = 2 − p p 2 E[X^2] = \cfrac{2-p}{p^2} E[X2]=p22p
方差 V a r ( X ) Var(X) Var(X)为:
V a r ( X ) = E [ X 2 ] − E [ X ] 2 = 1 − p p 2 Var(X) = E[X^2] - E[X]^2 = \cfrac{1-p}{p^2} Var(X)=E[X2]E[X]2=p21p

参考资料:《概率论基础教程》Sheldon M.Ross

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值