概率论——超几何随机变量

超几何随机变量

1 定义

  假定一个袋子里面有 N N N个球,其中有 m m m个白球, N − m N-m Nm个黑球,现在随机地从袋子中不放回地取出 n n n个球,令随机变量 X X X表示取出来的白球数,则:
P { X = i } = ( m i ) ( N − m n − i ) ( N n )         i = 0 , 1 , ⋯   , n P\{X = i\} = \cfrac{\begin{pmatrix}m\\i\end{pmatrix}\begin{pmatrix}N-m\\n-i\end{pmatrix}}{\begin{pmatrix}N\\n\end{pmatrix}}\ \ \ \ \ \ \ i = 0,1,\cdots,n P{X=i}=(Nn)(mi)(Nmni)       i=0,1,,n
一个随机变量 X X X如果其概率质量函数形如上式,其中 N , m , n N,m,n N,m,n值给定,那么就称 X X X为超几何随机变量
  注意, i i i的取值范围是0到 n n n,如果 i i i不满足 n − ( N − m ) ≤ i ≤ m i n ( n , m ) n-(N-m)\le i \le min(n,m) n(Nm)imin(n,m),那么 P { X = i } = 0 P\{X=i\} = 0 P{X=i}=0,但是上式总是成立的,因为我们规定了在 k < 0 k\lt 0 k<0 r < k r\lt k r<k时, ( r k ) = 0 \begin{pmatrix}r\\k\end{pmatrix}=0 (rk)=0

2 超几何随机变量的近似

  现在我们已经知道了从 N N N个球(白球比例 p = m / N p=m/N p=m/N)中不放回地随机取 n n n个球,那么取中的白球数为超几何随机变量。现在考虑一种情况,即对与 n n n来说,如果 m , N m,N m,N都很大的话,那么有放回和无放回地取球没什么差别,因为不管取出来的是什么球,接下来取到白球的概率仍然近似于 p p p。直观感觉就是,当 m , N m,N m,N相对于 n n n很大时, X X X的概率质量函数应该近似于参数为 ( n , p ) (n,p) (n,p)的二项随机变量的概率质量函数。我们来推导一下:
P { X = i } = ( m i ) ( N − m n − i ) ( N n ) = m ! ( m − i ) ! i ! ∗ ( N − m ) ! ( N − m − n + i ) ! ( n − i ) ! ∗ ( N − n ) ! n ! N ! = ( n i ) m N ∗ m − 1 N − 1 ⋯ N − m N − i ∗ N − m − 1 N − i − 1 ⋯ N − m − ( n − i − 1 ) N − i − ( n − i − 1 ) ≈ ( n i ) p i ( 1 − p ) n − i \begin{aligned} P\{X = i\} &= \cfrac{\begin{pmatrix}m\\i\end{pmatrix}\begin{pmatrix}N-m\\n-i\end{pmatrix}}{\begin{pmatrix}N\\n\end{pmatrix}}\\ &=\cfrac{m!}{(m-i)!i!}*\cfrac{(N-m)!}{(N-m-n+i)!(n-i)!}*\cfrac{(N-n)!n!}{N!}\\ &=\begin{pmatrix}n\\i\end{pmatrix}\cfrac{m}{N}*\cfrac{m-1}{N-1}\cdots\cfrac{N-m}{N-i}*\cfrac{N-m-1}{N-i-1}\cdots\cfrac{N-m-(n-i-1)}{N-i-(n-i-1)}\\ &\approx \begin{pmatrix}n\\i\end{pmatrix}p^i(1-p)^{n-i} \end{aligned} P{X=i}=(Nn)(mi)(Nmni)=(mi)!i!m!(Nmn+i)!(ni)!(Nm)!N!(Nn)!n!=(ni)NmN1m1NiNmNi1Nm1Ni(ni1)Nm(ni1)(ni)pi(1p)ni
其中最后一个等式成立的条件是 p = m / N p=m/N p=m/N m , N m,N m,N相对于 n , i n,i ni来说都很大

3 参数为 ( n , N , m ) (n,N,m) (n,N,m)的超几何随机变量的期望和方差

  按照之前的期望和方差的求法,通过找到递推关系来计算,我们先来计算 E [ X k ] E[X^k] E[Xk]
E [ X k ] = ∑ i = 0 n i k P { X = i } = ∑ i = 0 n i k ( m i ) ( N − m n − i ) / ( N n ) E[X^k] = \sum_{i=0}^ni^kP\{X=i\} =\sum_{i=0}^ni^k\begin{pmatrix}m\\i\end{pmatrix}\begin{pmatrix}N-m\\n-i\end{pmatrix}/\begin{pmatrix}N\\n\end{pmatrix} E[Xk]=i=0nikP{X=i}=i=0nik(mi)(Nmni)/(Nn)
利用恒等式 i ( m i ) = m ( m − 1 i − 1 ) , n ( N n ) = N ( N − 1 n − 1 ) i\begin{pmatrix}m\\i\end{pmatrix}=m\begin{pmatrix}m-1\\i-1\end{pmatrix},n\begin{pmatrix}N\\n\end{pmatrix}=N\begin{pmatrix}N-1\\n-1\end{pmatrix} i(mi)=m(m1i1)n(Nn)=N(N1n1)带入上式得:
E [ X k ] = m n N ∑ i = 1 n i k − 1 ( m − 1 i − 1 ) ( N − m n − i ) / ( N − 1 n − 1 ) E[X^k] = \cfrac{mn}{N}\sum_{i=1}^ni^{k-1}\begin{pmatrix}m-1\\i-1\end{pmatrix}\begin{pmatrix}N-m\\n-i\end{pmatrix}/\begin{pmatrix}N-1\\n-1\end{pmatrix} E[Xk]=Nmni=1nik1(m1i1)(Nmni)/(N1n1)
换元令 j = i − 1 j = i-1 j=i1,上式得:
E [ X k ] = m n N ∑ j = 0 n − 1 ( j + 1 ) k − 1 ( m − 1 j ) ( N − m n − j − 1 ) / ( N − 1 n − 1 ) = m n N E [ ( Y + 1 ) k − 1 ] \begin{aligned} E[X^k] &= \cfrac{mn}{N}\sum_{j=0}^{n-1}(j+1)^{k-1}\begin{pmatrix}m-1\\j\end{pmatrix}\begin{pmatrix}N-m\\n-j-1\end{pmatrix}/\begin{pmatrix}N-1\\n-1\end{pmatrix} \\ &=\cfrac{mn}{N}E[(Y+1)^{k-1}] \end{aligned} E[Xk]=Nmnj=0n1(j+1)k1(m1j)(Nmnj1)/(N1n1)=NmnE[(Y+1)k1]
其中 Y Y Y为参数为 ( n − 1 , N − 1 , m − 1 ) (n-1,N-1,m-1) (n1,N1,m1)的超几何随机变量。在上式的基础上令k = 1得到期望:
E [ X ] = m n N = n p E[X] = \cfrac{mn}{N} = np E[X]=Nmn=np
即取出白球数的期望值为 m n N \cfrac{mn}{N} Nmn。再令 k = 2 k=2 k=2得到:
E [ X 2 ] = m n N E [ Y + 1 ] = m n N [ ( m − 1 ) ( n − 1 ) N − 1 + 1 ] E[X^2] = \cfrac{mn}{N}E[Y+1]=\cfrac{mn}{N}[\cfrac{(m-1)(n-1)}{N-1}+1] E[X2]=NmnE[Y+1]=Nmn[N1(m1)(n1)+1]
则方程 V a r ( X ) Var(X) Var(X)为:
V a r ( X ) = E [ X 2 ] − E [ X ] 2 = m n N [ ( m − 1 ) ( n − 1 ) N − 1 + 1 − m n N ] = n p ( 1 − p ) ( 1 − n − 1 N − 1 ) Var(X) = E[X^2] - E[X]^2 = \cfrac{mn}{N}[\cfrac{(m-1)(n-1)}{N-1}+1-\cfrac{mn}{N}]\\ = np(1-p)(1-\cfrac{n-1}{N-1}) Var(X)=E[X2]E[X]2=Nmn[N1(m1)(n1)+1Nmn]=np(1p)(1N1n1)
根据上一节的内容,当 N , m N,m N,m相对于 n , i n,i n,i很大时,上式方差 V a r ( X ) Var(X) Var(X)近似于:
V a r ( X ) ≈ n p ( 1 − p ) Var(X)\approx np(1-p) Var(X)np(1p)
  总的来说, E [ X ] E[X] E[X]与有放回取球(即白球数是参数为 ( n , p ) (n,p) (n,p)的二项随机变量)是一样的,而当球数很大时, V a r ( X ) Var(X) Var(X)近似于有放回的情形

参考资料:《概率论基础教程》Sheldon M.Ross

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值