(二)质点碰撞理论(Point-Mass Impulse-Momentum Collision Theory)

  考虑两个高速移动物体的碰撞,二者的碰撞发生在极短时间内,接触点受力远大于物体其他位置所受力。在这种条件下,牛顿定律可以适用于二者,同时不需要考虑碰撞期间的其他力。

1 n-t坐标系

  考虑质量分别为 m 1 , m 2 m_1,m_2 m1,m2的两个物体的碰撞。以两个物体碰撞点切线方向作为t轴,法线方向作为n轴,建立n-t坐标系。x-y是固定的参考坐标系。n-t坐标系和x-y坐标系的夹角我们用 Γ \Gamma Γ来表示,如下图所示。(下图把碰撞的两个物体分开一段距离,便于更清晰地观察)
在这里插入图片描述

2 碰撞分析

2.1 动量守恒

  碰撞过程中,在碰撞点处,两物体受力大小相等方向相反。将受力分解到n和t两个方向,我们可以列出两个方向物体所受冲量大小。同样我们用大写字母代表碰撞结束的状态量,小写字母代表碰撞起始的状态量。则有:

m 1 V 1 n − m 1 v 1 n = P n m 1 V 1 t − m 1 v 1 t = P t m 2 V 2 n − m 2 v 2 n = − P n m 1 V 2 t − m 2 v 2 t = − P t m_1V_{1n} - m_1v_{1n} = P_n\\ m_1V_{1t} - m_1v_{1t} = P_t\\ m_2V_{2n} - m_2v_{2n} = -P_n\\ m_1V_{2t} - m_2v_{2t} = -P_t\\ m1V1nm1v1n=Pnm1V1tm1v1t=Ptm2V2nm2v2n=Pnm1V2tm2v2t=Pt

因此n和t方向上的动量守恒可以写为:
m 1 V 1 n − m 1 v 1 n + m 2 V 2 n − m 2 v 2 n = 0 m 1 V 1 t − m 1 v 1 t + m 1 V 2 t − m 2 v 2 t = 0 m_1V_{1n} - m_1v_{1n} + m_2V_{2n} - m_2v_{2n} =0\\ m_1V_{1t} - m_1v_{1t} +m_1V_{2t} - m_2v_{2t}= 0\\ m1V1nm1v1n+m2V2nm2v2n=0m1V1tm1v1t+m1V2tm2v2t=0

2.2 引入恢复系数(coefficient of restitution)和冲量比(impulse ratio)

  上面4个等式,6个未知数,显然不足以求解碰撞后速度。所以我们需要额外引入两个量。

恢复系数(COR)

  恢复系数 e e e这里直接定义如下,它代表法向方向,(负的)两物体碰撞后速度之差和碰撞前速度之差的比值。当然恢复系数还有一些其他定义,这里暂不讨论,我们直接用结论即可:

e = − V 2 n − V 1 n v 2 n − v 1 n e = - \frac{V_{2n} - V_{1n}}{v_{2n} - v_{1n}} e=v2nv1nV2nV1n

上式定义的恢复系数被叫做牛顿恢复系数(Newton’s coefficient of restitution)

冲量比(impulse ratio)

  冲量比 μ \mu μ:代表t和n方向上冲量的比值,可以为负数,定义如下。后续会给出 μ \mu μ相关的知识。

P t = μ P n P_t = \mu P_n Pt=μPn

2.3 碰撞求解

  经过上述讨论,我们有6个未知数,6个方程,可以直接求解碰撞后两物体在n和t方向的速度大小。

V 1 n = v 1 n + m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 1 V 2 n = v 1 n − m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 2 V 1 t = v 1 t + μ m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 1 V 2 t = v 1 t − μ m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 2 V_{1n} = v_{1n} + \overline m (1+e)(v_{2n} - v_{1n})/m_1\\ V_{2n} = v_{1n} - \overline m (1+e)(v_{2n} - v_{1n})/m_2\\ V_{1t} = v_{1t} + \mu\overline m (1+e)(v_{2n} - v_{1n})/m_1\\ V_{2t} = v_{1t} - \mu\overline m (1+e)(v_{2n} - v_{1n})/m_2\\ V1n=v1n+m(1+e)(v2nv1n)/m1V2n=v1nm(1+e)(v2nv1n)/m2V1t=v1t+μm(1+e)(v2nv1n)/m1V2t=v1tμm(1+e)(v2nv1n)/m2

其中

m ‾ = m 1 m 2 m 1 + m 2 \overline m = \frac{m_1m_2}{m_1 + m_2} m=m1+m2m1m2

3 物体碰撞前后速度变化 Δ v \Delta v Δv

  对于车辆事故分析,我们可能更关注碰撞前后两物体的速度(矢量)变化
Δ v = V 1 − v 1 \Delta v = V_1 - v_1 Δv=V1v1

因此结合上面的分析,我们已经可以求得 Δ v \Delta v Δv

Δ v i = m ‾ ( v 2 n − v 1 n ) m i ( 1 + e ) ( 1 + μ 2 )          i = 1 , 2 \Delta v_i = \frac{\overline m(v_{2n} - v_{1n})}{m_i}(1+e)\sqrt{(1+\mu^2)}\ \ \ \ \ \ \ \ i=1, 2 Δvi=mim(v2nv1n)(1+e)(1+μ2)         i=1,2

4 动能损失

  动能损失同样可以直接求解
T L = 1 2 m 1 ( v 1 n 2 + v 1 t 2 ) + 1 2 m 2 ( v 2 n 2 + v 2 t 2 ) − 1 2 m 1 ( V 1 n 2 + V 1 t 2 ) − 1 2 m 2 ( V 2 n 2 + V 2 t 2 ) T_L = \frac{1}{2}m_1(v_{1n}^2 + v_{1t}^2) + \frac{1}{2}m_2(v_{2n}^2 + v_{2t}^2) - \frac{1}{2}m_1(V_{1n}^2 + V_{1t}^2) - \frac{1}{2}m_2(V_{2n}^2 + V_{2t}^2) TL=21m1(v1n2+v1t2)+21m2(v2n2+v2t2)21m1(V1n2+V1t2)21m2(V2n2+V2t2)
带入上面求得的速度,可以得到动能损失的最终表达式

T L = 1 2 m ‾ ( v 2 n − v 1 n ) 2 ( 1 + e ) [ ( 1 − e ) + 2 μ r − ( 1 + e ) μ 2 ] T_L = \frac{1}{2}\overline m(v_{2n} - v_{1n})^2(1+e)[(1-e)+2\mu r-(1+e)\mu^2] TL=21m(v2nv1n)2(1+e)[(1e)+2μr(1+e)μ2]
其中:

r = v 2 t − v 1 t v 2 n − v 1 n r = \frac{v_{2t} - v_{1t}}{v_{2n} - v_{1n}} r=v2nv1nv2tv1t

5 极端情况

5.1 P t = 0 P_t = 0 Pt=0

  在这种情况下,接触点是没有切向力的,虽然实际情况不太可能发生这种情况。在这种情况下,冲量比 μ = 0 \mu = 0 μ=0。因此动能损失变成了:

T L = 1 2 m ‾ ( v 2 n − v 1 n ) 2 ( 1 − e ) 2 T_L = \frac{1}{2}\overline m(v_{2n} - v_{1n})^2(1-e)^2 TL=21m(v2nv1n)2(1e)2

可以看到, e e e决定了动能损失。

5.2 P t P_t Pt足够大

   P t P_t Pt足够大可以引起t方向相对滑动时,考虑 V 2 t − V 1 t = 0 V_{2t} - V_{1t} = 0 V2tV1t=0这个条件。通过上面求解得到的速度,我们可以得到:

μ = μ 0 = r 1 + e \mu = \mu_0 = \frac{r}{1+e} μ=μ0=1+er
  其中 r r r与上面是同一个结果。 μ 0 \mu_0 μ0叫做临界冲量比(critical impulse ratio),当 μ \mu μ μ 0 \mu_0 μ0时,两物体在碰撞结束时t方向的速度是相同的。

  这意味着,当 ∣ μ ∣ < ∣ μ 0 ∣ |\mu| \lt |\mu_0| μ<μ0时,两物体在分离时刻都是存在相对滑动的(存在t方向相对速度)。一般来说, μ \mu μ都是在 [ 0 , μ 0 ] [0, \mu_0] [0,μ0]之间的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值