文章目录
考虑两个高速移动物体的碰撞,二者的碰撞发生在极短时间内,接触点受力远大于物体其他位置所受力。在这种条件下,牛顿定律可以适用于二者,同时不需要考虑碰撞期间的其他力。
1 n-t坐标系
考虑质量分别为
m
1
,
m
2
m_1,m_2
m1,m2的两个物体的碰撞。以两个物体碰撞点切线方向作为t轴,法线方向作为n轴,建立n-t坐标系。x-y是固定的参考坐标系。n-t坐标系和x-y坐标系的夹角我们用
Γ
\Gamma
Γ来表示,如下图所示。(下图把碰撞的两个物体分开一段距离,便于更清晰地观察)
2 碰撞分析
2.1 动量守恒
碰撞过程中,在碰撞点处,两物体受力大小相等方向相反。将受力分解到n和t两个方向,我们可以列出两个方向物体所受冲量大小。同样我们用大写字母代表碰撞结束的状态量,小写字母代表碰撞起始的状态量。则有:
m 1 V 1 n − m 1 v 1 n = P n m 1 V 1 t − m 1 v 1 t = P t m 2 V 2 n − m 2 v 2 n = − P n m 1 V 2 t − m 2 v 2 t = − P t m_1V_{1n} - m_1v_{1n} = P_n\\ m_1V_{1t} - m_1v_{1t} = P_t\\ m_2V_{2n} - m_2v_{2n} = -P_n\\ m_1V_{2t} - m_2v_{2t} = -P_t\\ m1V1n−m1v1n=Pnm1V1t−m1v1t=Ptm2V2n−m2v2n=−Pnm1V2t−m2v2t=−Pt
因此n和t方向上的动量守恒可以写为:
m
1
V
1
n
−
m
1
v
1
n
+
m
2
V
2
n
−
m
2
v
2
n
=
0
m
1
V
1
t
−
m
1
v
1
t
+
m
1
V
2
t
−
m
2
v
2
t
=
0
m_1V_{1n} - m_1v_{1n} + m_2V_{2n} - m_2v_{2n} =0\\ m_1V_{1t} - m_1v_{1t} +m_1V_{2t} - m_2v_{2t}= 0\\
m1V1n−m1v1n+m2V2n−m2v2n=0m1V1t−m1v1t+m1V2t−m2v2t=0
2.2 引入恢复系数(coefficient of restitution)和冲量比(impulse ratio)
上面4个等式,6个未知数,显然不足以求解碰撞后速度。所以我们需要额外引入两个量。
恢复系数(COR)
恢复系数 e e e这里直接定义如下,它代表法向方向,(负的)两物体碰撞后速度之差和碰撞前速度之差的比值。当然恢复系数还有一些其他定义,这里暂不讨论,我们直接用结论即可:
e = − V 2 n − V 1 n v 2 n − v 1 n e = - \frac{V_{2n} - V_{1n}}{v_{2n} - v_{1n}} e=−v2n−v1nV2n−V1n
上式定义的恢复系数被叫做牛顿恢复系数(Newton’s coefficient of restitution)
冲量比(impulse ratio)
冲量比 μ \mu μ:代表t和n方向上冲量的比值,可以为负数,定义如下。后续会给出 μ \mu μ相关的知识。
P t = μ P n P_t = \mu P_n Pt=μPn
2.3 碰撞求解
经过上述讨论,我们有6个未知数,6个方程,可以直接求解碰撞后两物体在n和t方向的速度大小。
V 1 n = v 1 n + m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 1 V 2 n = v 1 n − m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 2 V 1 t = v 1 t + μ m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 1 V 2 t = v 1 t − μ m ‾ ( 1 + e ) ( v 2 n − v 1 n ) / m 2 V_{1n} = v_{1n} + \overline m (1+e)(v_{2n} - v_{1n})/m_1\\ V_{2n} = v_{1n} - \overline m (1+e)(v_{2n} - v_{1n})/m_2\\ V_{1t} = v_{1t} + \mu\overline m (1+e)(v_{2n} - v_{1n})/m_1\\ V_{2t} = v_{1t} - \mu\overline m (1+e)(v_{2n} - v_{1n})/m_2\\ V1n=v1n+m(1+e)(v2n−v1n)/m1V2n=v1n−m(1+e)(v2n−v1n)/m2V1t=v1t+μm(1+e)(v2n−v1n)/m1V2t=v1t−μm(1+e)(v2n−v1n)/m2
其中
m ‾ = m 1 m 2 m 1 + m 2 \overline m = \frac{m_1m_2}{m_1 + m_2} m=m1+m2m1m2
3 物体碰撞前后速度变化 Δ v \Delta v Δv
对于车辆事故分析,我们可能更关注碰撞前后两物体的速度(矢量)变化
Δ
v
=
V
1
−
v
1
\Delta v = V_1 - v_1
Δv=V1−v1
因此结合上面的分析,我们已经可以求得 Δ v \Delta v Δv
Δ v i = m ‾ ( v 2 n − v 1 n ) m i ( 1 + e ) ( 1 + μ 2 ) i = 1 , 2 \Delta v_i = \frac{\overline m(v_{2n} - v_{1n})}{m_i}(1+e)\sqrt{(1+\mu^2)}\ \ \ \ \ \ \ \ i=1, 2 Δvi=mim(v2n−v1n)(1+e)(1+μ2) i=1,2
4 动能损失
动能损失同样可以直接求解
T
L
=
1
2
m
1
(
v
1
n
2
+
v
1
t
2
)
+
1
2
m
2
(
v
2
n
2
+
v
2
t
2
)
−
1
2
m
1
(
V
1
n
2
+
V
1
t
2
)
−
1
2
m
2
(
V
2
n
2
+
V
2
t
2
)
T_L = \frac{1}{2}m_1(v_{1n}^2 + v_{1t}^2) + \frac{1}{2}m_2(v_{2n}^2 + v_{2t}^2) - \frac{1}{2}m_1(V_{1n}^2 + V_{1t}^2) - \frac{1}{2}m_2(V_{2n}^2 + V_{2t}^2)
TL=21m1(v1n2+v1t2)+21m2(v2n2+v2t2)−21m1(V1n2+V1t2)−21m2(V2n2+V2t2)
带入上面求得的速度,可以得到动能损失的最终表达式
T
L
=
1
2
m
‾
(
v
2
n
−
v
1
n
)
2
(
1
+
e
)
[
(
1
−
e
)
+
2
μ
r
−
(
1
+
e
)
μ
2
]
T_L = \frac{1}{2}\overline m(v_{2n} - v_{1n})^2(1+e)[(1-e)+2\mu r-(1+e)\mu^2]
TL=21m(v2n−v1n)2(1+e)[(1−e)+2μr−(1+e)μ2]
其中:
r = v 2 t − v 1 t v 2 n − v 1 n r = \frac{v_{2t} - v_{1t}}{v_{2n} - v_{1n}} r=v2n−v1nv2t−v1t
5 极端情况
5.1 P t = 0 P_t = 0 Pt=0
在这种情况下,接触点是没有切向力的,虽然实际情况不太可能发生这种情况。在这种情况下,冲量比 μ = 0 \mu = 0 μ=0。因此动能损失变成了:
T L = 1 2 m ‾ ( v 2 n − v 1 n ) 2 ( 1 − e ) 2 T_L = \frac{1}{2}\overline m(v_{2n} - v_{1n})^2(1-e)^2 TL=21m(v2n−v1n)2(1−e)2
可以看到, e e e决定了动能损失。
5.2 P t P_t Pt足够大
P t P_t Pt足够大可以引起t方向相对滑动时,考虑 V 2 t − V 1 t = 0 V_{2t} - V_{1t} = 0 V2t−V1t=0这个条件。通过上面求解得到的速度,我们可以得到:
μ
=
μ
0
=
r
1
+
e
\mu = \mu_0 = \frac{r}{1+e}
μ=μ0=1+er
其中
r
r
r与上面是同一个结果。
μ
0
\mu_0
μ0叫做临界冲量比(critical impulse ratio),当
μ
\mu
μ为
μ
0
\mu_0
μ0时,两物体在碰撞结束时t方向的速度是相同的。
这意味着,当 ∣ μ ∣ < ∣ μ 0 ∣ |\mu| \lt |\mu_0| ∣μ∣<∣μ0∣时,两物体在分离时刻都是存在相对滑动的(存在t方向相对速度)。一般来说, μ \mu μ都是在 [ 0 , μ 0 ] [0, \mu_0] [0,μ0]之间的。