Transformer变体(Sparse Transformer,Longformer,Switch Transformer)

在这里插入图片描述
不知不觉Transformer已经逐步渗透到了各个领域,就其本身也产生了相当多的变体,如上图。博主前一篇类似博文更新了 Transformer变体(Star-Transformer,Transformer-XL),本篇文章想整理一下这两篇很重要的Transformer变体,分别是Sparse Transformer and Switch Transformer。

在这里插入图片描述
Explicit Sparse Transformer: : Concentrated Attention Through Explicit Selection
标准Transformer的复杂度为O(n^2),但是否序列内的所有元素都有必要被关注到,是否有方法可以简化这个机制?所以本文的“Sparse”重点就体现在只有少量的token参与attention分布的计算,以提升注意力机制的集中度。即本来一个词只和少量的词有关,但是标准自注意力却会给所有的词都分配权重然后聚合,一种很自然的想法就是通过显式选择,只让模型关注少数几个元素就行。

模型图如上图,最左边是标准计算注意力的路线,中间的是Sparse的实现,可以看到区别就在于中间多了一个手工选择的Sparsification,最右则是它的执行示意图。简单来说就是在算softmax分数之前先进行top-k选择出少数的重要元素即可。具体来说先算内积: P = Q K T d P=\frac{QK^T}{\sqrt{d}} P=

### Transformer 架构中的 GRU 变体 在深度学习领域,Transformer架构引入了一种全新的机制来处理序列数据,而门控循环单元(GRU)作为另一种流行的序列建模方法,在某些情况下可以替代传统的LSTM或标准RNN结构。然而,需要注意的是,原始的Transformer模型并不包含任何形式的RNN组件;它完全依赖于自注意力机制。 当提到将GRU融入到类似于Transformer的框架中时,实际上是指创建一种混合模型,这种模型试图结合两者的优势: - **编码器部分**:仍然保持多层自我注意机制的设计,用于捕捉输入序列内部的关系。 - **解码器部分**:可以用GRU代替原有的基于自注意力机制的解码器。这样做可以在一定程度上简化计算复杂度,并可能提高训练速度,尤其是在资源有限的情况下[^1]。 下面是一个简单的Python代码片段展示如何构建这样一个融合了GRU的Seq2Seq模型: ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding def build_gru_transformer(input_vocab_size, target_vocab_size, embedding_dim=256, units=1024): encoder_inputs = Input(shape=(None,)) # Encoder enc_emb = Embedding(input_vocab_size, embedding_dim)(encoder_inputs) _, state_h = GRU(units, return_state=True)(enc_emb) decoder_inputs = Input(shape=(None,)) dec_emb_layer = Embedding(target_vocab_size, embedding_dim) dec_emb = dec_emb_layer(decoder_inputs) # Decoder with GRU instead of self-attention layers gru_output = GRU(units, return_sequences=True)(dec_emb, initial_state=state_h) dense = Dense(target_vocab_size, activation='softmax') output = dense(gru_output) model = Model([encoder_inputs, decoder_inputs], output) model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) return model ``` 此实现方式展示了如何利用Keras API快速搭建一个带有GRU解码器的简单版本seq2seq网络。请注意这只是一个基础示例,实际应用中还需要考虑更多细节优化以及超参数调整等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值