强化学习 gym安装

1.创建虚拟环境并进入

创建虚拟环境(python版本要大于3.7)

conda create -n gymlab2 python=3.7

启动虚拟环境

conda activate gymlab2

退出环境

conda deactivate

删除环境

conda remove -n gymlab --all

查看当前存在的环境

conda env list

2.安装 gym

克隆到gym文件夹

git clone https://github.com/openai/gym.git

进入gym文件夹

cd gym

进行完全安装:

pip install -e '.[all]'

注意:如果安装过程报错You appear to be missing MuJoCo. We expected to find the file here:

规避错误:注释掉 setup.py 文件中和 MuJoCo 有关的安装选项

右键打开文件~/gym/setup.py

"mujoco": ["mujoco_py>=1.50, <2.0"],
这句注释掉,改为:
#"mujoco": ["mujoco_py>=1.50, <2.0"],

重新运行以下命令:

pip install -e '.[all]'

以后用的时候单独安装MuJoCo

pip install -e '.[mujoco]'

(这行命令好像不能成功安装,如果用的话以后再找教程吧)

3.验证是否安装成功

1. 激活进入anaconda虚拟环境
conda activate gymlab2
 
2. 运行python环境
python
 
3. 创建小车倒立摆模型
import gym //这一步不报错就已经证明安装成功!!
env = gym.make('CartPole-v1')
env.reset()
env.render()

 

 4.参考链接

【强化学习-1】gym安装教程_IT菜鸟-CSDN博客_gym安装
强化学习 gym安装_mfccc的博客-CSDN博客_gym安装报错
 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值