基于物理信息的神经网络(PINN)基础【1】与文言一心模型测试

本文介绍了基于物理信息的神经网络(PINN)的基本概念,阐述了PINN在解决偏微分方程中的应用,并详细分析了布朗大学Raissi等人提出的PINN模型,探讨了物理信息嵌入的原因和模型构成。PINN通过将物理方程纳入损失函数,使得模型训练符合物理规律。此外,文章还提及了PINN在数据有限情况下的优势,以及与文言一心概念的关系。
摘要由CSDN通过智能技术生成

1. 基于物理信息的神经网络基本概念

基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理规律。

2. 论文概览:布朗大学Raissi等提出的PINN网络模型

2019年,来自布朗大学应用数学的研究团队Raissi和Perdikaris 等提出了一种用物理方程作为运算限制的“物理激发的神经网络” (PINN) 并发表在了计算物理学领域权威杂志《计算物理学期刊》(Journal of Computational Physics) 上。这篇论文一经发表就获得了大量关注。这篇论文因为代码体系的完整性使得开发人员们很容易上手把相关的学习框架应用到不同领域上去。所以在发表不久之后,一系列不同的PINN也被其他研究者开发出来。甚至可以不夸张的说,PINN是目前AI物理领域论文中最常见到的框架和词汇之一。

  • PINN基本原理
    这篇论文提到的PINN,实际上是一种基于物理信息的神经网络,其实就是把物理方程作为限制加入神经网络中使训练的结果满足物理规律。而这个所谓的限制是怎么实现的?其实就是通过把物理方程的迭代前后的差值加到神经网络的损失函数里面去,让物理方程也“参与”到了训练过程。这样,神经网络在训练迭代时候优化的不仅仅的网络自己的损失函数,还有物理方程每次迭代的差,使得最后训练出来的结果就满足物理规律了。
  • 非线性偏微分方程的神经网络求解基本思路:这篇文章提出了两种求解方法,第一种模型形成了一个新的高效数据驱动系列模型,能够充分利用时空编码信息;第二种模型允许使用具有任意无限级数的精确隐式Runge-Kutta时间步进方案。</
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robo-网络矿产提炼工

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值