特征值和特征向量的一些性质和应用

A的特征值λ和特征向量x有如下关系: A x = λ x Ax=λx Ax=λx

  • d e t ( A − λ I ) = 0 det(A-λI)=0 det(AλI)=0 (求解这个行列式可以用来算特征值)
  • A = X Λ X − 1 A=X\Lambda X^{-1} A=XΛX1
  • A 2 = X Λ 2 X − 1 A^2=X\Lambda^2 X^{-1} A2=XΛ2X1
  • 特征值之和等于迹
  • 特征值之积点云行列式的值
  • 逆矩阵的特征向量不变,特征值变成导数

因为 A x = λ x Ax=λx Ax=λx
所以 A x = λ I x Ax=λIx Ax=λIx
可以得到 ( A − λ I ) x = 0 (A-λI)x=0 AλIx=0
列空间的角度理解可以知道, ( A − λ I ) x (A-λI)x (AλIx是矩阵 ( A − λ I ) (A-λI) AλI的列空间中的坐标 x x x
如果它等于0,有两种可能,一个是特征向量为0,另一个是这个列空间的基向量不是互相独立的,部分列可以抵消其他列,这意味着 ( A − λ I ) (A-λI) AλI是非满秩矩阵,矩阵不满秩,意味着它的行列式等于0, 所以 d e t ( A − λ I ) = 0 det(A-λI)=0 det(AλI)=0

列空间的角度理解,我们可以按列堆叠特征向量得到如下关系
A X = X Λ AX=X\Lambda AX=XΛ, 其中 Λ \Lambda Λ是特征值组成的对角矩阵,X是特征向量按列堆叠,如果特征向量互相独立则有
这个可以得出 A = X Λ X − 1 A=X\Lambda X^{-1} A=XΛX1
A x = λ x Ax=\lambda x Ax=λx >> x = λ A − 1 x x=\lambda A^{-1}x x=λA1x >> 1 / λ x = A − 1 x 1/\lambda x = A^{-1}x 1/λx=A1x 从这个关系可以看出逆矩阵的特征向量和原本一致,但是特征值变成原本的导数
另外对称矩阵有两个特性

  • 特征值是实数
  • 特征向量正交

所以对称矩阵可以拆成 A = Q Λ Q − 1 A=Q\Lambda Q^{-1} A=QΛQ1

特征值之和等于迹
特征值之积点云行列式的值
这两个可以通过解 d e t ( A − λ I ) = 0 det(A-λI)=0 det(AλI)=0时构造出方程,再结合韦达定理可得出

A n x = λ n x A^nx=\lambda^nx Anx=λnx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值