分类任务中softmax+argmax和直接argmax得到的结果有什么异同?

异同点:

  • 直接使用argmax只能得到最大值的位置,而使用softmax+argmax把矩阵的值转化在0和1之间概率分布,且所有值的和为1,然后选取概率最大的元素作为输出,得到最大值的位置和该位置上的概率分布,会增加一定的计算量。
  • 通过softmax+argmax可以将原始矩阵中的所有元素转化为概率值,使得各元素的权重得到了平衡,更具有可解释性;而直接使用argmax则只返回最大值的索引,忽略了其他元素的信息。此外,通过softmax+argmax可以灵活控制输出结果的数量,可以输出前n个最大值的索引,而直接使用argmax只能返回一个最大值的索引。
  • softmax+argmax可以用于多分类问题,每个元素可以表示为某个类别的概率,而直接使用argmax只适用于二分类或多分类问题中只有两个类别的情况。

相同点:

  • 最后两者的结果是相同的,两种方法都可以找到矩阵中最大的值。

代码示例:

import numpy as np

# 构造一个5*5的随机矩阵
matrix = np.random.rand(5, 5)

# softmax+argmax
# p = np.exp(m)/np.sum(np.exp(m)) # 将矩阵中的每个元素转化为概率
# softmax_result = np.argmax(p) # 返回概率最大的索引
softmax_result = np.argmax(np.apply_along_axis(np.softmax, 1, matrix), axis=1)

# 直接使用argmax
argmax_result = np.argmax(matrix, axis=1)

print("Original matrix:\n", matrix)
print("\nsoftmax+argmax result:\n", softmax_result)
print("\nargmax result:\n", argmax_result)

输出:

Original matrix:
 [[0.50712117 0.41882609 0.12838709 0.14777572 0.05002968]
 [0.1468695  0.49966726 0.98388963 0.1329398  0.99236624]
 [0.18196213 0.47813681 0.98735743 0.7460055  0.83342566]
 [0.23392307 0.61984472 0.43340923 0.23700659 0.9244233 ]
 [0.23524479 0.80606302 0.83358194 0.37676559 0.27463544]]

softmax+argmax result:
 [0 4 2 4 2]

argmax result:
 [0 4 2 4 2]

从输出结果可以看出,softmax+argmax和argmax的结果是一样的,但是softmax+argmax得到的结果是归一化后的概率值。因为矩阵中的每个值都大于0,因此softmax不会改变矩阵中元素的相对大小。在实际应用中,softmax可能会对结果产生影响并产生不同的输出。

回答: softmaxargmax是用于获取类别index的两种常用方法。softmax是一种常用的激活函数,它将输入的向量转化为概率分布,使得每个类别的概率值都在0到1之间,并且所有类别的概率之为1。通过对softmax输出的概率分布进行argmax操作,可以得到概率最大的类别的index。这个index可以用来表示模型对于输入数据的分类结果。\[3\] 然而,softmaxargmax在某些情况下可能存在问题。首先,softmax输出的概率分布可能会过于自信,导致对于不确定的样本也给出了确定的分类结果。这可能会导致模型的过拟合泛化能力的下降。其次,argmax操作只选择了概率最大的类别,忽略了其他类别的信息。这可能会导致模型对于类别之间的细微差别不敏感。\[2\] 为了解决这些问题,研究者提出了一种称为Soft-Argmax的方法。Soft-Argmax相当于对人工标注进行了一次软化,将原本的one-hot标注转化为概率分布。这种思想在分类任务中早有应用,被称为LabelSmoothing。Soft-Argmax通过学习一种概率分布来表示类别的权重,从而使得模型对于不确定性的样本更加鲁棒。\[2\] 另外,为了解决Gumbel-Softmax的随机性带来的问题,研究者引入了重参数技巧。重参数技巧通过引入一个可微的噪声分布来近似Gumbel-Softmax的采样过程,从而使得模型的训练更加稳定可控。\[3\] #### 引用[.reference_title] - *1* *2* *3* [Sampling-Argmax:用重参数技巧优化Soft-Argmax](https://blog.csdn.net/qq_27590277/article/details/123081210)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ywfwyht

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值