论文 PPT 画图导出 PDF 注意事项

为了论文能通过 PDF eXpress 的检查,PPT 导出图片时选择另存为 Adobe PDF,PDF选项全部设置为空。之后可以使用 Adobe Acrobat 检查,具体做法:文件 -> 属性 -> 字体 -> 查看是否所有字体后面都标注了“已嵌入子集”,下面展示了一个失败案例。
在这里插入图片描述
在这里插入图片描述

<think>好的,用户想了解如何用工具或代码绘制神经网络结构图,并且需要示例教程。首先,我需要整理一下现有的引用内容,看看有没有相关的信息。 引用[2]提到了用Python调用LaTex生成PDF文档的PlotNeuralNet工具,不过用户反映在Windows下有问题,推荐Ubuntu系统。这可能是一个选项,但用户可能需要详细的步骤。引用[4]提到了Matlab中使用plot画图,但可能不太适合神经网络结构。引用[5]推荐了Visio,并提到需要提前画草稿,这可能适合手动画图。引用[3]中的Python示例代码虽然构建了神经网络,但没有涉及绘图部分。 接下来,用户可能需要几种不同的方法:使用代码工具、专业软件或者手动画图工具。PlotNeuralNet在引用[2]中有说明,但用户觉得复杂,可能需要简化教程。Visio在引用[5]里有步骤,可以整理出来。另外,可能还有其他工具比如TensorBoard、NN-SVG或者PPT,这些在引用中没有提到,但根据常见知识可以补充。 需要确保回答结构清晰,分步骤说明每种方法,并给出示例。同时,注意用户可能对代码工具有疑问,特别是PlotNeuralNet的安装和使用,需要详细说明如何安装依赖项,比如LaTeX环境。此外,用户可能关心跨平台的问题,比如Windows下的问题,可以建议使用WSL或Docker。 还要检查是否需要生成相关问题,根据示例,用户需要相关问题,所以最后要添加几个相关问题,比如工具比较、优化方法、应用场景等。 现在组织内容,分方法介绍,每种方法包括步骤、示例和注意事项。引用对应的引用来源,比如PlotNeuralNet对应引用[2],Visio对应引用[5],Matlab对应引用[4]等。确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,但问题中可能涉及较少数学公式,但如果有的话需要正确应用。 最后,验证每个步骤是否可行,比如PlotNeuralNet的安装命令是否正确,Visio的操作步骤是否合理,代码示例是否有误。确保引用标记正确,比如[^2]、[^5]等。</think>### 如何用工具或代码绘制神经网络结构图 #### 1. **使用代码工具(PlotNeuralNet)** **步骤:** 1. **安装依赖** 需要安装LaTeX环境(如TeX Live)和Python库: ```bash git clone https://github.com/HarisIqbal88/PlotNeuralNet.git cd PlotNeuralNet pip install -r requirements.txt ``` 2. **编写结构定义文件** 示例代码(`simple_net.py`): ```python from pycore.tikzeng import * arch = [ to_head('..'), to_cor(), to_begin(), to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2), to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"), to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2), to_connection("pool1", "conv2"), to_end() ] def main(): namefile = str(arch[0].action)[2:-1] to_generate(arch, namefile + '.tex') if __name__ == '__main__': main() ``` 3. **生成PDF** 运行代码后,使用LaTeX编译生成PDF,适合学术论文。 **注意事项:** - 在Windows下需使用WSL或Docker解决兼容性问题。 --- #### 2. **使用专业软件(Visio)** **步骤:** 1. **绘制草稿** 提前在纸上设计网络层次(如输入层、隐藏层、输出层)。 2. **基础形状绘制** - 使用圆形/矩形表示神经元,直线表示连接。 - 按`Ctrl+滑轮`放大画布,调整线条颜色和填充(右键设置形状格式)。 3. **组合与对齐** - 用`Ctrl+单击`多选神经元,右键选择“组合”统一移动。 - 通过“对齐工具”保持间距一致。 **示例效果:** ![Visio绘制神经网络](https://example.com/visio_net.png) (注:需手动插入实际图片) --- #### 3. **使用在线工具(NN-SVG)** **步骤:** 1. 访问 [NN-SVG](https://alexlenail.me/NN-SVG/)。 2. 选择架构类型(如LeNet、ResNet)。 3. 调整参数: - 层数:输入`3`层卷积 - 神经元数:隐藏层设为`128` 4. 导出为SVG/PNG格式。 **特点:** - 无需编程,适合快速生成简单结构图。 --- #### 4. **使用Matplotlib(Python代码)** **示例代码:** ```python import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.annotate("Input", xy=(0.1, 0.5), fontsize=12) ax.annotate("Hidden", xy=(0.5, 0.5), fontsize=12) ax.annotate("Output", xy=(0.9, 0.5), fontsize=12) plt.axis('off') plt.show() ``` ![Matplotlib示意图](https://example.com/matplotlib_net.png) --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值