奈奎斯特稳定性判据的推导

本文在上篇博文复变函数在自动控制原理中的应用之Cauchy原理的基础上,使用Cauchy原理来推导奈奎斯特稳定性判据。

上篇博文中选取复变函数 F ( s ) F(s) F(s)为系统的特征方程,假设开环传递函数是有理真分式:

G ( s ) H ( s ) = B ( s ) A ( s ) G(s) H(s)=\frac{B(s)}{A(s)} G(s)H(s)=A(s)B(s)
则:
F ( s ) = 1 + G ( s ) H ( s ) = 1 + B ( s ) A ( s ) = A ( s ) + B ( s ) A ( s ) F(s)=1+G(s) H(s)=1+\frac{B(s)}{A(s)}=\frac{A(s)+B(s)}{A(s)} F(s)=1+G(s)H(s)=1+A(s)B(s)=A(s)A(s)+B(s)
我们很容易得到, F ( s ) F(s) F(s)的零点即为闭环系统的极点; F ( s ) F(s) F(s)的极点即为开环传递函数的极点;

由Cauchy原理得出结论:在 s s s平面上的封闭曲线 Γ \Gamma Γ域内共有 P P P个极点和 Z Z Z个零点,且封闭曲线 Γ \Gamma Γ不穿过 F ( s ) F(s) F(s)的任何一个零极点。当 s s s沿 Γ \Gamma Γ顺时针移动一周时,函数 F ( s ) F(s) F(s) F ( s ) F(s) F(s)平面上的轨迹将包围原点 R = P − Z R=P-Z R=PZ周(其中,零极点个数需考虑重根,R<0顺时针,R>0逆时针)。

重要结论:

若选封闭曲线 Γ \Gamma Γ包围整个s域右半平面,则:
系统的开环传递函数正实部极点P已知,只需求出函数 F ( s ) F(s) F(s) F ( s ) F(s) F(s)平面上的轨迹包围原点的圈数R(即 G ( s ) H ( s ) G(s)H(s) G(s)H(s)包围 − 1 + j 0 -1+j0 1+j0点的圈数);便可得到 F ( s ) F(s) F(s)的零点即系统闭环极点在右半平面的个数!!!

s s s平面的闭合曲线 Γ \Gamma Γ的选取

首先来选择 s s s平面的闭合曲线 Γ \Gamma Γ,为了能够知道系统的闭环稳定性,我们需要知道闭环极点在 s s s平面右半平面的个数,根据上篇博文的推导,这等价于求 F ( s ) F(s) F(s)函数的零点在右半平面的个数,若零点个数为零则系统稳定。为此,要求闭合曲线 Γ \Gamma Γ能把整个右半平面包围起来,那么 Γ \Gamma Γ可以由两部分组成,如下图所示:

在这里插入图片描述

分别是:
1.半径无穷大的半圆 s = ∞ e j θ , θ ∈ [ 9 0 ∘ , + 9 0 ∘ ] s=\infty e^{j \theta}, \theta\in\left[90^{\circ},+90^{\circ}\right] s=ejθ,θ[90,+90]
2.虚轴 s = j ω , ω ∈ [ − ∞ , + ∞ ] s=j \omega, \omega \in[-\infty,+\infty] s=jω,ω[,+]
当原点处有开环极点时,需避开该极点,即可以在原点附近取一半径无穷小的圆弧:

s = ε e i θ s=\varepsilon e^{i \theta} s=εeiθ

其中 ε \varepsilon ε为正无穷小, θ ∈ [ − 9 0 ∘ , 9 0 ∘ ] \theta \in\left[-90^{\circ}, 90^{\circ}\right] θ[90,90],如上图所示。

G ( s ) H ( s ) G(s)H(s) G(s)H(s)闭合曲线的绘制

s s s平面的闭合曲线 Γ \Gamma Γ关于实轴对称,则 G ( s ) H ( s ) G(s)H(s) G(s)H(s)曲线 Γ G H \Gamma_{GH} ΓGH也关于实轴对称,所以只需绘制 Γ G H \Gamma_{GH} ΓGH lm ⁡ s ⩾ 0 \operatorname{lm} s \geqslant 0 lms0对应的部分,即可得到 G ( s ) H ( s ) G(s)H(s) G(s)H(s)的半闭合曲线,仍记为 Γ G H \Gamma_{GH} ΓGH。接下来分析映射的 Γ G H \Gamma_{GH} ΓGH上半虚轴 s = j ω , ω ∈ [ 0 , + ∞ ] s=j \omega, \omega \in[0,+\infty] s=jω,ω[0,+]对应 G ( s ) H ( s ) = G ( j ω ) H ( j ω ) G(s) H(s)=G(j \omega) H(j \omega) G(s)H(s)=G(jω)H(jω),即为奈奎斯特曲线。半径无穷大的1/4圆弧 s = ∞ e j θ , θ ∈ [ 0 ∘ , + 9 0 ∘ ] s=\infty e^{j \theta}, \theta \in\left[0^{\circ},+90^{\circ}\right] s=ejθ,θ[0,+90]映射成:

G ( s ) H ( s ) = { 0 n &gt; m K ∗ n = m G(s) H(s)=\left\{\begin{array}{cc}{0} &amp; {n&gt;m} \\ {K^{*}} &amp; {n=m}\end{array}\right. G(s)H(s)={0Kn>mn=m

式中 m , n m,n m,n为零极点个数。可见半径无穷大的1/4圆弧在 F ( s ) F(s) F(s)平面的映射为一个点,且该点与虚轴在无穷远处的点映射的点相同,故不需要重复考虑(在 s s s F ( s ) F(s) F(s)的映射过程中, s s s域的半径无穷大的圆映射成了点,而虚轴无穷远处的点在该圆弧上)

特殊的,当原点处有极点时,需要分析半径无穷小的圆弧映射。此时,将系统的开环传递函数写成:

G ( s ) H ( s ) = 1 s v G 1 ( s ) G(s) H(s)=\frac{1}{s^{v}} G_{1}(s) G(s)H(s)=sv1G1(s)

式中:

1 s ν ∣ s = ε e j θ = 1 ε ν e − i ν θ \left.\frac{1}{s^{\nu}}\right|_{s=\varepsilon e^{j \theta}}=\frac{1}{\varepsilon^{\nu}} e^{-i \nu \theta} sν1s=εejθ=εν1eiνθ

ε \varepsilon ε为正无穷小时,趋近于 ∞ e − j ν θ \infty e^{-j \nu \theta} ejνθ注意:此处的 θ \theta θ范围为 [ 0 ∘ , + 9 0 ∘ ] \left[0^{\circ}, +90^{\circ}\right] [0,+90]对应原点处的1/4圆弧, ∞ e − j ν θ \infty e^{-j \nu \theta} ejνθ则表示为半径无穷大的 ν / 4 \nu /4 ν/4圆弧

由于 G 1 ( s ) = K ∏ i = 1 m ( τ j s + 1 ) ∏ i = 1 n ( T i s + 1 ) G_{1}(s)=K \frac{\prod_{i=1}^{m}\left(\tau_{j} s+1\right)}{\prod_{i=1}^{n}\left(T_{i} s+1\right)} G1(s)=Ki=1n(Tis+1)i=1m(τjs+1)

s = ε e j θ s=\varepsilon e^{j \theta} s=εejθ时,写成极坐标形式 ∣ K ∣ e j ∠ G 1 ( 0 ) |K| \mathrm{e}^{\mathrm{j} \angle \mathrm{G}_{1}(0)} KejG1(0)

则有

G ( s ) H ( s ) ∣ s = ε e j θ ≈ ∞ e j [ v × ( − θ ) + ∠ G 1 ( j 0 ) ] G(s) H\left.(s)\right|_{s=\varepsilon e^{j \theta}}\approx \infty e^{j\left[v \times(-\theta)+\angle G_{1}(j 0)\right] } G(s)H(s)s=εejθej[v×(θ)+G1(j0)]

可知,对应的曲线为角度从 ∠ G 1 ( j 0 ) \angle G_{1}(j 0) G1(j0)起,圆心角为 v × ( − θ ) v \times(-\theta) v×(θ)的圆弧。即可从 G ( j 0 + ) H ( j 0 + ) G\left(j 0_{+}\right) H\left(j 0_{+}\right) G(j0+)H(j0+)点起,逆时针做半径无穷大、圆心角为 v × 9 0 ∘ v \times 90^{\circ} v×90的圆弧补线(补到正实轴)。
(逆时针做补线的原因: w = 0 + w=0_+ w=0+时刻,内奎斯特曲线的相角为 [ v × ( − θ ) + ∠ G 1 ( j 0 ) ] \left[v \times(-\theta)+\angle G_{1}(j 0)\right] [v×(θ)+G1(j0)] w = 0 − w=0_- w=0时刻,相角为 [ ∠ G 1 ( j 0 ) ] \left[\angle G_{1}(j 0)\right] [G1(j0)],逆时针方向为相角增加方向,故逆时针加补线)

综上可知,当开环传递函数在原点处有极点时,其奈奎斯特曲线应该分成两段:

s = j ω , ω ∈ [ 0 , + ∞ ] s=j \omega, \omega \in[0,+\infty] s=jω,ω[0,+]

对应: G ( s ) H ( s ) = G ( j ω ) H ( j ω ) G(s) H(s)=G(j \omega) H(j \omega) G(s)H(s)=G(jω)H(jω)

无穷小半径小圆弧:
s = ε e j θ s=\varepsilon e^{j \theta} s=εejθ
对应半径无穷大、圆心角 ν × 9 0 ∘ \nu \times 90^{\circ} ν×90的圆弧,因此其奈奎斯特曲线需从 G ( j 0 + ) H ( j 0 + ) G\left(j 0_{+}\right) H\left(j 0_{+}\right) G(j0+)H(j0+)点起,逆时针做半径无穷大、圆心角为

ν × 9 0 ∘ \nu \times 90^{\circ} ν×90的圆弧补线(补到实轴!!!)。

如下如所示:

在这里插入图片描述

闭合曲线 Γ F \Gamma_F ΓF包围 F ( s ) F(s) F(s)平面原点的圈数等于曲线 Γ G H \Gamma_GH ΓGH包围 − 1 + j 0 -1+j0 1+j0点的圈数,但是由于绘制的 Γ G H \Gamma_GH ΓGH曲线是半包围曲线,求其包围 − 1 + j 0 -1+j0 1+j0点的圈数不方便,因此引入”穿越”概念,指 Γ G H \Gamma_{GH} ΓGH曲线穿过 − 1 + j 0 -1+j0 1+j0左侧负实轴,其中随着 w w w增大,曲线以相角增大的方式(逆时针)穿过叫正穿越 N + N_+ N+,以相角减小的方式(顺时针)穿过的叫负穿越 N − N_- N, Γ G H \Gamma_{GH} ΓGH起始或终止于 − 1 + j 0 -1+j0 1+j0左侧负实轴的穿越称为半次穿越;由于 Γ F \Gamma_F ΓF包围原点的圈数 R R R是奈奎斯特曲线 Γ G H \Gamma_{GH} ΓGH包围 − 1 + j 0 -1+j0 1+j0圈数的两倍;

那么:(因为奈奎斯特曲线的起点总在实轴上,终点总在原点处,故一次正穿越即对应逆时针包围 − 1 + j 0 -1+j0 1+j0一次,同理一次负穿越即对应顺时针包围 − 1 + j 0 -1+j0 1+j0一次

R = 2 N = 2 ( N + − N − ) R=2 N=2\left(N_{+}-N_{-}\right) R=2N=2(N+N)

这便引出奈奎斯特稳定性判据:

闭环系统稳定的充分必要条件是,奈奎斯特曲线不穿过 − 1 + j 0 -1+j0 1+j0点(若穿越且 Z = P − 2 N = 0 Z=P-2 N=0 Z=P2N=0为临界稳定),且逆时针包围 − 1 + j 0 -1+j0 1+j0点的圈数 R R R为开环传递函数的正实部极点数 P P P;

进一步的,闭合曲线 Γ G H \Gamma_{GH} ΓGH包围函数 F ( s ) = 1 + G ( s ) H ( s ) F(s)=1+G(s)H(s) F(s)=1+G(s)H(s)的零点数即闭环控制系统的正实部极点数为:

Z = P − 2 N Z=P-2 N Z=P2N

可以看出,奈奎斯特稳定性判据是将时域里的稳定性判据(闭环极点均具有负实部),借助复变函数中的Cauchy原理,转换到了频域,两者本质上是等价的。

  • 14
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值