复变函数在自动控制原理中的应用之Cauchy原理

Cauchy原理又称为幅角原理,设 s s s是复变量, F ( s ) F(s) F(s)是有理式函数,设

F ( s ) = k ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) F(s)=\frac{k\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} F(s)=(sp1)(sp2)(spn)k(sz1)(sz2)(szm)

式中 z i , p j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) z_{i}, p_{j}(i=1,2, \cdots, m ; j=1,2, \cdots, n) zi,pj(i=1,2,,m;j=1,2,,n) F ( s ) F(s) F(s)的零极点,设他们如下图分布。假设复变量 s s s变化,在 s s s平面中形成一条不通过 F ( s ) F(s) F(s)零极点的闭合路径 Γ \Gamma Γ;相应地,在 F ( s ) F(s) F(s)平面中映射成对应的闭合曲线 Γ F \Gamma_F ΓF,称为 Γ \Gamma Γ的像或映射,如图所示:

在这里插入图片描述

由Cauchy原理可知,当 s s s沿 Γ \Gamma Γ顺时针移动一周时,那些未被包围的零极点到 s s s的矢量 ( s − z i ) (s-z_i) (szi) ( s − p j ) (s-p_j) (spj)的相角变化为0。而被包围的零点形成的矢量 ( s − z 1 ) (s-z_1) (sz1),其相角的变化为 − 2 π -2\pi 2π,可知, F ( s ) F(s) F(s)的相角变化为:

Δ ∠ F ( s ) = Δ [ ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 m ∠ ( s − p j ) ] = Δ ∠ s − z 1 = − 2 π \Delta \angle{F(s)}= \Delta [\sum_{i=1}^m \angle(s-z_i)- \sum_{j=1}^m \angle(s-p_j)] =\Delta \angle{ s-z_{1}}=-2 \pi ΔF(s)=Δ[i=1m(szi)j=1m(spj)]=Δsz1=2π

即矢量 F ( s ) F(s) F(s)沿曲线 Γ F \Gamma_F ΓF绕坐标原点顺时针转动了一圈。同理,若果包围在路径 Γ \Gamma Γ中的是 F ( s ) F(s) F(s)的极点 p 1 p_1 p1,那么当 s s s沿 Γ \Gamma Γ顺时针转动一圈时,矢量 F ( s ) F(s) F(s)将沿 Γ F \Gamma_F ΓF绕坐标原点逆时针转动一圈。

因此,由幅角原理得出结论:在 s s s平面上的封闭曲线 Γ \Gamma Γ域内共有 P P P个极点和 Z Z Z个零点,且封闭曲线 Γ \Gamma Γ不穿过 F ( s ) F(s) F(s)的任何一个零极点。当 s s s沿 Γ \Gamma Γ顺时针移动一周时,函数 F ( s ) F(s) F(s) F ( s ) F(s) F(s)平面上的轨迹将包围原点 R = P − Z R=P-Z R=PZ周(其中,零极点个数需考虑重根,R<0顺时针,R>0逆时针)。

如何选取复变函数 F ( s ) F(s) F(s)

首先我们来看系统的开环传递函数 G ( s ) H ( s ) G(s)H(s) G(s)H(s),这是一个有理真分式,可以写成:

G ( s ) H ( s ) = B ( s ) A ( s ) G(s) H(s)=\frac{B(s)}{A(s)} G(s)H(s)=A(s)B(s)

写出系统的闭环传递函数:

Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = G ( s ) 1 + B ( s ) A ( s ) = A ( s ) G ( s ) A ( s ) + B ( s ) \Phi(s)=\frac{G(s)}{1+G(s) H(s)}=\frac{G(s)}{1+\frac{B(s)}{A(s)}}=\frac{A(s) G(s)}{A(s)+B(s)} Φ(s)=1+G(s)H(s)G(s)=1+A(s)B(s)G(s)=A(s)+B(s)A(s)G(s)

选取复变函数 F ( s ) F(s) F(s)为系统的特征方程

F ( s ) = 1 + G ( s ) H ( s ) = 1 + B ( s ) A ( s ) = A ( s ) + B ( s ) A ( s ) F(s)=1+G(s) H(s)=1+\frac{B(s)}{A(s)}=\frac{A(s)+B(s)}{A(s)} F(s)=1+G(s)H(s)=1+A(s)B(s)=A(s)A(s)+B(s)

可知, F ( s ) F(s) F(s)的零点即为系统的闭环极点;我们可以得出以下重要结论:

函数 F ( s ) F(s) F(s) F ( s ) F(s) F(s)平面上的轨迹包围原点的圈数即为系统的开环传递函数 G ( s ) H ( s ) G(s)H(s) G(s)H(s)包围 − 1 + j 0 -1+j0 1+j0点的圈数。这就是可以用系统的开环传递函数判断系统闭环极点的依据。
  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值