【统计学习笔记】拉格朗日乘数法与约束最优化问题

1. 拉格朗日函数

先考虑一下问题:
当 ϕ ( x , y , z ) = 0 时 , 求 函 数 F ( x , y , z ) 的 极 值 。 当\phi(x,y,z)=0时,求函数F(x,y,z)的极值。 ϕ(x,y,z)=0F(x,y,z)
设曲面 F ( x , y , z ) − u = 0 F(x,y,z)-u=0 F(x,y,z)u=0,随着u的改变,当该曲面与曲面 ϕ ( x , y , z ) = 0 \phi(x,y,z)=0 ϕ(x,y,z)=0相切时,u取极值。设切点为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)
两个曲面在切点处的法向量分别为:
{ n ⃗ 1 = ( F x , F y , F z ) n ⃗ 2 = ( ϕ x , ϕ y , ϕ z ) \begin{cases} \vec{n}_1=(F_x,F_y,F_z)\\ \vec{n}_2=(\phi_x,\phi_y,\phi_z) \end{cases} {n 1=(Fx,Fy,Fz)n 2=(ϕx,ϕy,ϕz)
要使两曲面相切,则法向量平行,故 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)满足:
{ F x ( x 0 , y 0 , z 0 ) + λ ϕ x ( x 0 , y 0 , z 0 ) = 0 F y ( x 0 , y 0 , z 0 ) + λ ϕ y ( x 0 , y 0 , z 0 ) = 0 F z ( x 0 , y 0 , z 0 ) + λ ϕ z ( x 0 , y 0 , z 0 ) = 0    … … ( 1 ) \begin{cases} F_x(x_0,y_0,z_0)+\lambda\phi_x(x_0,y_0,z_0)=0\\ F_y(x_0,y_0,z_0)+\lambda\phi_y(x_0,y_0,z_0)=0\\ F_z(x_0,y_0,z_0)+\lambda\phi_z(x_0,y_0,z_0)=0 \end{cases}\;\dots\dots(1) Fx(x0,y0,z0)+λϕx(x0,y0,z0)=0Fy(x0,y0,z0)+λϕy(x0,y0,z0)=0Fz(x0,y0,z0)+λϕz(x0,y0,z0)=0(1)
因为 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)在曲面 ϕ ( x , y , z ) = 0 \phi(x,y,z)=0 ϕ(x,y,z)=0上,所以其还满足等式:
ϕ ( x 0 , y 0 , z 0 ) = 0    … … ( 2 ) \phi(x_0,y_0,z_0)=0\;\dots\dots(2) ϕ(x0,y0,z0)=0(2)
构造函数:
L ( x , y , z , λ ) = f ( x , y , z ) + λ ϕ ( x , y , z ) L(x,y,z,\lambda)=f(x,y,z)+\lambda\phi(x,y,z) L(x,y,z,λ)=f(x,y,z)+λϕ(x,y,z)
(1)(2)两式等价于L的所有一阶偏导数为0,L称为拉格朗日函数。直接对拉格朗日函数求偏导计算条件极值称为拉格朗日数乘法。

2. 约束最优化问题

2.1 无约束最优化

min ⁡ x ∈ R n f ( x ) \min\limits_{x\in\mathcal{R}^n}f(x) xRnminf(x)
直接对x求导,即:
▽ x f ( x ) = 0 \bigtriangledown_xf(x)=0 xf(x)=0

2.2 等式约束最优化

{ min ⁡ x ∈ R n f ( x ) s . t .      h i ( x ) = 0 , i = 1 , 2 , … , l \begin{cases} \min\limits_{x\in\mathcal{R}^n}f(x)\\ s.t.\;\;h_i(x)=0,i=1,2,\dots,l \end{cases} {xRnminf(x)s.t.hi(x)=0i=1,2,,l
利用拉格朗日数乘法求解:
L ( x , λ ) = f ( x ) + ∑ i = 1 l λ i h i ( x ) L(x,\lambda)=f(x)+\sum\limits_{i=1}^l\lambda_ih_i(x) L(x,λ)=f(x)+i=1lλihi(x)
即求解方程:
{ ∂ L ∂ x = 0 h i ( x ) = 0 , i = 1 , 2 , … , l \begin{cases} \frac{\partial{L}}{\partial{x}}=0\\ h_i(x)=0,i=1,2,\dots,l \end{cases} {xL=0hi(x)=0i=1,2,,l

2.3 不等式约束最优化

{ min ⁡ x ∈ R n f ( x ) s . t .      c j ≤ 0 , i = 1 , 2 , … , k          h j ( x ) = 0 , j = 1 , 2 , … , l \begin{cases} \min\limits_{x\in\mathcal{R}^n}f(x)\\ s.t.\;\;c_j\leq0,i=1,2,\dots,k\\ \;\;\;\;h_j(x)=0,j=1,2,\dots,l \end{cases} xRnminf(x)s.t.cj0i=1,2,,khj(x)=0j=1,2,,l
构建广义拉格朗日函数:
L ( x , λ , μ ) = f ( x ) + ∑ i = 1 k λ i c i ( x ) + ∑ j = 1 l μ j h j ( x ) L(x,\lambda,\mu)=f(x)+\sum\limits_{i=1}^k\lambda_ic_i(x)+\sum\limits_{j=1}^l\mu_jh_j(x) L(x,λ,μ)=f(x)+i=1kλici(x)+j=1lμjhj(x)
定义拉格朗日对偶函数:
g ( λ , μ ) = min ⁡ x L ( x , λ , μ ) = min ⁡ x ( f ( x ) + ∑ i = 1 k λ i c i ( x ) + ∑ j = 1 l μ j h j ( x ) )      λ ≥ 0 g(\lambda,\mu)=\min\limits_xL(x,\lambda,\mu)\\ =\min\limits_x(f(x)+\sum\limits_{i=1}^k\lambda_ic_i(x)+\sum\limits_{j=1}^l\mu_jh_j(x))\;\;\lambda\geq0 g(λ,μ)=xminL(x,λ,μ)=xmin(f(x)+i=1kλici(x)+j=1lμjhj(x))λ0
可以证明,拉格朗日对偶函数一定是凹函数。故L的最值p*永远大于等于g。即:
g ( λ , μ ) ≤ L ( x , λ , μ ) ≤ q ∗ g(\lambda,\mu)\leq L(x,\lambda,\mu)\leq{q^*} g(λ,μ)L(x,λ,μ)q
这样,我们可以由对偶函数给出一个尽可能逼近q*的值,即:
max ⁡ λ , μ g ( λ , μ )      ( s . t .      λ ≥ 0 ) \max\limits_{\lambda,\mu}g(\lambda,\mu)\;\;(s.t.\;\;\lambda\geq0) λ,μmaxg(λ,μ)(s.t.λ0)
最终,我们可以给出原问题的对偶形式:
{ max ⁡ λ , μ min ⁡ x L ( x , λ , μ )      s . t .      λ i ≥ 0      i = 1 , 2 , … , k \begin{cases}\max\limits_{\lambda,\mu}\min\limits_xL(x,\lambda,\mu)\;\;\\ s.t.\;\;\lambda_i\geq0\;\;i=1,2,\dots,k \end{cases} λ,μmaxxminL(x,λ,μ)s.t.λi0i=1,2,,k

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值